پیش لفظ
بے انتہا حمد و ثنااس خالقِ ارض و سما کے لیے جس نے مجھے عقلِ سلیم اور فہم و فراست کی دولت سے مالا مال کیااورجس نے مجھے لفظوں سے کھیلنے کی قوت اور ملکہ بخشا۔کروڑوںدرود و سلام اس نبی ﷺ کی بارگاہِ بے کس پناہ میں کہ جنہوں نے انسانیت کو جہالت کی تاریکیوںسے نکال کر علم کی روشنی سے متعارف کروایا۔
اس حقیقت سے انکار نہیں کیا جاسکتا کہ تحقیق انتہائی کٹھن امر ہے۔اس کتاب کی تکمیل کے دوران اگرچہ مجھے کئی دشواریوں کا سامنا کرنا پڑا،کئی بار میرے قدم بھی ڈگمگائے مگراس وقت میرے شفیق استاد ڈاکٹر مشتاق عادل صاحب نے اس مشکل کام میںمیری رہنمائی کی اورمجھے آبلہ پائی کی مشقتوں سے بچائے رکھا اور اپنی مصروفیات سے قیمتی وقت نکال کر ہر لحاظ سے میری مدد کی۔
میںممنون ہوںاپنے والدین کی کہ جن کی حوصلہ افزائی سے مجھے تقویت ملتی رہی۔تحقیق کے دوران اکثر شب بیداری والدہ کی نیند میں خلل کا باعث بنی مگر انہوں نے کبھی اس کی شکایت نہیں کی، انتہائی معذرت کے ساتھ ان کی شکرگزار ہوں۔ اپنے اہل خانہ کابھی شکریہ ادا کرتی ہوں کہ انہوںنے میرے حوصلے کو قائم رکھا۔ میری تحقیقی سرگرمیوںکے دوران انہوں نے میری گھریلو ذمہ داریوں میں تخفیف کو خندہ پیشانی سے قبول کیا۔ میںبالخصوص اپنے والدمحترم کی تہہ دل سے شکرگزار ہوں جنہوں نے اس کتاب کی مکمل پروف ریڈنگ کی۔ انگلش او اردو پر ان کا مکمل عبور میری تحریر کے مختلف گوشوں میں آپ کو واضح جھلکتا نظر آئے گا۔ان کی رہنمائی کے بغیر یہ کام میرے لیے انتہائی کٹھن تھا۔
میں یونیورسٹی آف سیالکوٹ اور اپنے شعبہ کے اساتذہ ڈاکٹر یاسمین کوثر،میڈم ماریہ بلال، ڈاکٹر یوسف اعوان اورڈاکٹر عامر اقبال کاشکریہ ادا کرتی ہوں جن کی شفقت اور حوصلہ افزائی کے باعث میرا یہ تحقیقی کام...
Islam being a complete code of life encompasses all aspects of a person’s personal and social life. Islam considers those as Muslims who submit to the will of Allah Almighty in all aspects of life. Islam is not merely a matter of private life and its worship system is not restricted only to a set of rituals, but has pervasive social consequences and develops a strong sense of moral society based on system of rules around center of universal concept of justice. Therefore, Islam proposed institutions with relation to justice, governance, cooperation and solidarity for achieving high economic growth and development. Achievement of development and growth of economy is fast in a society or country if it has developed human capital (human resource). Human capital is developed when education is imparted and facilities of health and sound life are provided to human beings. According to Islamic principles, if human beings cannot afford proper education in the society (or other facilities such as health care) then those who are well off endow their properties in Zakat, Awqaf (plural of waqf) and Charities for their better development and nourishment. These properties when endowed as Awqaf are deployed for propagation of education (knowledge, skills, training etc.) by establishing Madrassas (schools, maktabs, colleges, universities etc.) libraries, translating books, and conducting research. In Islamic society there were many Awqaf founded for establishing Madrassas. This paper is dedicated to discuss the development of human capital through education funded by Islamic Awqaf by reviewing literature.
In the proposed study, we present several significant results annexed to the wellknown Hermite-Hadamard inequality. Also, we focus on various newly established classes of convex functions and their corresponding variants of Hadamard type inequalities. This PhD dissertation is devoted to sift out certain inequalities of Hadamard type from the class of convex functions to their recently established versions, namely MT-convex functions, co-ordinated convex functions etc. In addition, we are mainly concerned with various updated versions and analogues of the well-known Hermite-Hadamard inequalities in terms of integrations such as, classical integrals, Riemann-Liouville’s fractional integrals and α-fractional conformable integrals. Eventually, as applications, the proposed results are further utilized to achieve some novel bounds for special means of positive real numbers. Also, some explicit bounds are also being derived to the versatile composite quadrature rules in terms of distinct functions belonging to different classes of convex functions. At the end, different inequalities have been obtained pertaining to F-divergence measures. In the first chapter, we present some basic concepts, certain necessary terminologies and recall a few important results from the theory of convex analysis in general, and convex sets and convex functions in particular, where many of them will be encountered through out the thesis. Also, these core and elementary notions will provide comparatively a better foundation to the readers in the understanding of the proposed study. In the second chapter, we present several integral identities for differentiable, twice differentiable and three times differentiable functions connected with both left and right hand parts of the classical Hermite-Hadamard inequality. Then, we obtain various Hadamard type inequalities based on these identities via classical integrals. These results have some natural applications to special means of real numbers and trapezoidal as well as midpoint formulas. In the third chapter, we discover two novel integral identities for twice differentiable functions. Then, we employ these identities to establish some general inequalities for the functions whose second derivatives absolute values are MTconvex. These inequalities provide us some new estimates for the right hand side of the Hermite-Hadamard type inequalities for classical integrals and Riemann- Liouville’s fractional integrals. Next, by making use of these results, we point out applications to some means of real numbers and several error estimations for the trapezoidal formula. In the fourth chapter, we obtain some new Hermite-Hadamard type inequalities for convex functions on the co-ordinates. These results refine the earlier work done by Dragomir and Chen . In the fifth chapter, we establish two integral identities for conformable fractional integrals. Then, under the utility these results, we design several integral inequalities connected with the left and right hand side of the Hermite-Hadamard type inequalities for conformable fractional integrals. These results extends the earlier known results from classical integrals to conformable fractional integrals. In the sixth chapter, we give applications of our main results established in the Chapters 2, 3, 4 and 6 respectively. In addition to that, in Section 6.1 applications to special means of real number are provided. Then, in the next Section 6.2, some new error estimates for trapezoidal formula are given. Furthermore, in the next Section 6.3, error estimates for midpoint formula are addressed. In the last Section 6.4, some applications to F-Divergence measures are provided.