Search or add a thesis

Advanced Search (Beta)
Home > Determinants of Women Participation in Economic Activities in Khyber Pukhtunkhwa

Determinants of Women Participation in Economic Activities in Khyber Pukhtunkhwa

Thesis Info

Author

Aqsa Farooq

Supervisor

Naeem-Ur-Rehman Khattak

Institute

Allama Iqbal Open University

Institute Type

Public

City

Islamabad

Country

Pakistan

Thesis Completing Year

2011

Thesis Completion Status

Completed

Page

77

Subject

Economics

Language

English

Other

Call No: 331 AQD; Publisher: Aiou

Added

2021-02-17 19:49:13

Modified

2023-01-08 08:50:56

ARI ID

1676709866323

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

ڈاکٹر عبدالجلیل فریدی

ڈاکٹر عبدالجلیل فریدی
افسوس ہے گذشتہ ماہ ڈاکٹر عبدالجلیل فریدی اکسٹھ برس کی عمر میں ہم سے جُدا ہوگئے۔ مرحوم ایک نہایت بلند مرتبہ اور ماہرِ فن ڈاکٹر کی حیثیت سے ریاست میں ہرجگہ معروف اور مشہور تھے ، لیکن عملی سیاسیات کے میدان میں گامزن ہوئے ابھی انھیں دس بارہ برس ہی ہوئے تھے،اس کے باوجود وہ اس شان اور کروفرکے ساتھ اپنی ریاست کے آسمان ِ سیاست پر نمودار ہوئے کہ پرانے چراغ جھلملا کے رہ گئے۔ ان کی سیاست اگر چہ اتر پردیش تک محدود رہی،لیکن ان کی غیر معمولی شخصیت کاوقار اوروزن پورے ملک کے مسلمانوں میں ہر جگہ محسوس کیا جاتا تھا۔اس کی وجہ یہ ہے کہ مرحوم جذبہ اورعمل دونوں کے انسان تھے، نہایت جری،بے باک اورصاف گوتھے۔ان کی سیاست شترگربگی یامنافقت کے عیب سے پاک وصاف تھی۔اورسب سے بڑھ کریہ کہ سیاست کوجلب منفعت کا ذریعہ بنانے کے بجائے انھوں نے چند در چند مالی نقصانات برداشت کیے اور اپنی کمائی کے لاکھوں روپئے اپنے کازپر بے دریغ خرچ کرڈالے۔اخلاق وعادات کے اعتبارسے بھی وہ بڑی خوبیوں کے مالک تھے ۔عقیدہ اورعمل میں پکے اورسچے مسلمان، ہمدرد ومتواضع، خوش اخلاق وخوش طبع تھے، اس بنا پر مخالفین بھی ان کاادب واحترام کرتے تھے۔ عارضۂ صدر میں مبتلاتھے، روس اور یورپ میں اعلیٰ سے اعلیٰ علاج کرایا مگرمرض نہ گیا۔ایک مرتبہ بڑی حسرت سے بولے : میں نے ڈاکٹر کی حیثیت میں تین لاکھ مریضوں کے ہاتھ دیکھے ہیں،لیکن آج خود اپنا ہاتھ دیکھتا ہوں توحسرت ہوتی ہے ۔آخر یہی مرض جان لیوا ثابت ہوا اوروہ خدا کو پیارے ہوگئے۔ا للّٰھمَّ اغفرلہ وارحمہ۔ [جون ۱۹۷۴ء]

 

The Islamic Political System: A Solution to the Modern Political Issues in the light of Tafsīr Sirāṭ-al-Jinān

As Islam gives a complete code of life, and it has a permanent political system. Rather to this, just as it has given rules and regulations in other spheres of life. It has also given unchangeable laws regarding politics. But Islam did not present a detailed structure of the government but left it to the Islamic Jurists to elaborate the principles regarding the Islamic political system. No corner of life is outside the limits of Islamic teachings. The Prophet (ﷺ) has provided guidance for every aspect of life through his words and deeds which should be kept in our mind is the guarantee of success and prosperity of religion and the world. In this article we will brief the Islamic political system and solution of modern political issues through the interpretation of the Qur’ānic verses in the light of Tafsīr Sirāṭ-al-Jinān by Muftī Muḥammad Qāsim Qādrī. Keywords: Islamic Political System Modern Political Issues, Tafsīr Ṣirāt-al-Jinān, Muftī Muḥammad Qāsim Qādrī, Shari'ah

A Robust Scheme of Vertebrae Segmentation for Medical Diagnosis

Automated vertebrae analysis from medical images plays an important role in computer aided diagnosis (CAD). It provides an initial and early identification of various vertebral abnormalities to doctors and radiologists. Vertebrae segmentation and classification are important but difficult tasks in medical imaging due to low contrasts in image, noise and high topological shape variations in radiological scans. It becomes even more challenging when dealing with various deformities and pathologies present in the vertebral scans like osteoporotic vertebral fractures. In this work, we want to address the challenging problem of vertebral image analysis for vertebra segmentation and classification. In the past, various traditional imagery techniques were employed to address these problems. Recently, deep learning techniques have been introduced in biomedical image processing for segmentation and characterization of several abnormalities. These techniques are becoming popular in solving various medical image analysis problems due to their robustness and accuracy. In this research, we present a solution of vertebrae segmentation and classification problem with the help of deep learning approach. We present a novel combination of traditional region based level-set with deep learning framework in order to extract the shape of vertebral bones accurately; which would be able to handle the deformities in the vertebral bones precisely and efficiently. After vertebrae segmentation, we further extend the work to abnormal vertebrae classification with the help of deep learning approach. This novel framework would be able to help the medical doctors and radiologists with better visualization of vertebral bones and providing the initial automated classification of vertebrae to be normal or abnormal. The proposed method of vertebrae segmentation was successfully tested on different datasets with various fields of views. The first dataset comprises of 173 CT scans of thoracolumbar (thoracic and lumbar) vertebrae in sagittal view, collected from a local hospital. The second dataset comprises 73 CT scans of cervical vertebrae in sagittal view, also collected from a local hospital. The third dataset comprises 20 CT scans of thoracolumbar (thoracic and lumbar) vertebrae in sagittal view collected from spine segmentation challenge CSI 2014. The forth dataset comprises 25 CT scans of lumbar vertebrae in sagittal view collected from spine segmentation challenge CSI 2016. Lastly, we have utilized the same locally collected set of 173 CT scans of thoracolumbar (thoracic and lumbar) vertebrae and extracted in axial view to perform the segmentation task.For classification purpose, we have utilized the locally collected set of 173 CT scans of thoracolumbar (thoracic and lumbar) vertebrae as these include osteoporotic vertebral fractures in it. The details of these datasets have been presented in respective sections. We have achieved promising results on our proposed techniques. The evaluation of the segmentation performance on the datasets with various machines and field of views helped us to ensure the robustness of our proposed method. On validation sets of these datasets, we have achieved an average dice score of around 95% for vertebrae segmentation; and accuracy of above 80% for the vertebrae classification. The detailed results have been presented in the results section. These results reveal that our proposed techniques are competitive over the other state of the arts in terms of accuracy, efficiency, flexibility and time.