Search or add a thesis

Advanced Search (Beta)
Home > Effect Some Antibiotics on the Growth of Cell Cultures of Vigna-Radiata L. Wilczek M. Phil Thesis

Effect Some Antibiotics on the Growth of Cell Cultures of Vigna-Radiata L. Wilczek M. Phil Thesis

Thesis Info

Author

Zerqa Nawaz

Program

Mphil

Institute

Allama Iqbal Open University

Institute Type

Public

City

Islamabad

Country

Pakistan

Thesis Completing Year

1993

Thesis Completion Status

Completed

Page

71

Subject

Life Sciences, Biology

Language

English

Other

Call No: 574.82 ZEE; Publisher: Deptt. of Biological Sciences, Quaid-E-Azam University

Added

2021-02-17 19:49:13

Modified

2023-02-19 12:33:56

ARI ID

1676709947955

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

المدد

المدد
(ارادھنا)
زندگی بھی، موت بھی تو دیتا ہے
موسموں کے راستے سنوار کر۔۔۔!
ابابیلوں ، بلبلوں اور کبوتروں کو بھیجتا ہے
اے عشق۔۔۔!
پتھروں کو موم کرتے ہوئے بیاباں کو لالہ زار کرنے والے
میں تجھے سبز پتوں پر خط لکھ کر۔۔۔!
لذتِ حقیقت میں ڈوبے چشموں کا۔۔۔،
طواف کرنے والی ہوائوں کے سپرد کروں
تیرے زائروں کی ۔۔۔!
صبح و شام خانقاہی دیواروں کو چومتا پھروں
تو تاثیرِ وصل کی انتہا۔۔۔
تو جوازِ ہجر کا مدعا
خواب کو جھنجھوڑتی ۔۔۔تعبیر کی رگوں میں دوڑتی وفا
اے شافی۔۔۔!
تو ہی بیمار کرتا ہے۔۔۔ تو ہی شفا دیتا ہے
اے خالقِ ارض و سما۔۔۔ اے طبیب ِ کون و مکاں۔۔!
میرا وسیلہ ہے خیر الوریٰ۔۔۔ المد دالمدد۔۔!
یا محصی ، یا محیطُ۔۔۔ المد دالمدد

میں بہلول کی باتیں اطمینان سے سنتا رہا کیونکہ اس کی باتوں میں کہیں کہیں نثری نظم کا اسلوب خوب صورت انداز میں نظر آیا تھا۔ وہ سامنے والے شخص کی فکر آلود سوچ کو معنویت کے ساتھ ، شفق کی تعلق داری میںلے آنے کا ماہر نظر آتا تھا۔ اسی لیے میں نے اپنے قیام کوطویل کرنے کا سوچا ۔ شاید وہ میری سوچ کو پڑھ چکا تھا۔ اسی لیے وہ میرے بولنے سے پہلے بول پڑا۔
اُس نے میری طرف دیکھتے ہوئے کہا۔۔۔خوشبو قید نہیں ہو سکتی۔ شاخیں ہوں گی تو پھول کھل سکے گا۔ بصورتِ دیگر صرف اک بیج ہے جس میں ساری دنیا قید ہے۔ اگر بیج کو سازگار موسم ، زمین ، روشنی اور پانی ملے گا تب ہی وہ روشنی، ہوا کے ساتھ پرندوں کو اپنی طرف بلانے کے قابل ہو گا۔ اسی لیے میں ایک جگہ رہ نہیں سکتا۔ آج ہوائوں کے ساتھ سورج سے باتیں کر رہا ہوں۔۔۔کل نہ جانے کہاں۔۔۔ستاروں کے ساتھ سرگوشیاں کرتے ہوئے، کس حالت میں پڑا...

The Philosophical Perspective in Case of Jihad

Here are two opposing views of scholars and different religions regarding the permission or non-permission of war on the basis of honor and lawfulness of human life. The Hindus and Jews legalize war, whereas the Buddhists and Christians consider it illegal. Islam follows the middle path and attributes the legality of war to its purpose because only the purpose tells the righteousness or wrongfulness of any deed. Islam has prevented from all those purposes that eliminate the cause of Allah Almighty from war. Islam does not legalize war for any worldly purpose so the pursuit of fame, kingship, booty, conquering another land or national or personal revenge is not legal. Jihad has been enjoined for the elimination of hurdles in the path of Allah. It clarifies the policy of Islam that war is not an end but it is a means to an end. Today the west is doing propaganda against Islam that Islam spread through sword and the concept of jihad is being related to terrorism. The purposes of jihad should be kept in mind in order to understand the philosophy of jihad. The aim of this paper is to highlight the purposes of jihad and its importance. Views of various scholars have been observed in this study along with references from Quran and Hadith.

The Noether Symmetries and Invariants of Some Partial Differential Equations

A connection is obtained between isometries and Noether symmetries for the area-minimizing La- grangian. It is shown that the Lie algebra of Noether symmetries for the Lagrangian minimizing an (n − 1)-area enclosing a constant n-volume in a Euclidean space is so(n) ⊕s Rn and in a space of constant curvature the Lie algebra is so(n). Here for the non-compact space this has to be taken in the sense of being cut at a fixed boundary that respects the symmetry of the space and is not a volume enclosing hypersurface otherwise. Further if the space has one section of constant cur- vature of dimension n1 , another of n2 , etc. to nk and one of zero curvature of dimension m, with n≥ k j=1 nj + m (as some of the sections may have no symmetry), then the Lie algebra of Noether symmetries is ⊕k so(nj + 1) ⊕ (so(m) ⊕s Rm ). j=1 For a subclass of the general class of linear hyperbolic systems, obtainable from complex base hy- perbolic equation, semi-invariant and joint invariants are investigate by complex and real symmetry analysis. A comparison of all the invariants derived by complex and real methods is presented here which shows that the complex procedure provides a few invariants different from those extracted by real symmetry analysis for a linear hyperbolic system. The equations for the classification of symmetries of the scalar linear elliptic equation are obtained in terms of Cotton’s invariants. New joint differential invariants of the scalar linear elliptic equations in two independent variables are derived, in terms of Cotton’s invariants by application of the infinitesimal method. Joint differential invariants of the scalar linear elliptic equation are also derived from the bases of the joint differential invariants of the scalar linear hyperbolic equation under the application of the complex linear transformation. We also find a basis of joint differential invariants for such equations by utilization of the operators of invariant differentiation. The other invariants are functions of the bases elements and their invariant derivatives. Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by splitting the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables.