Search or add a thesis

Advanced Search (Beta)
Home > Evaluation of Secondary School Examination in the Context of Text Books of Secondaryclasses and Respective Teachers Training in Punjab

Evaluation of Secondary School Examination in the Context of Text Books of Secondaryclasses and Respective Teachers Training in Punjab

Thesis Info

Author

Muhammad Khalid

Supervisor

Ahmad Farooq Mashhadi

Institute

Allama Iqbal Open University

Institute Type

Public

City

Islamabad

Country

Pakistan

Thesis Completing Year

1998

Thesis Completion Status

Completed

Page

125.;

Subject

Education

Language

English

Other

Call No: 373 MUE; Publisher: Aiou

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676710045077

Similar


Loading...

Similar Thesis

Showing 1 to 20 of 100 entries
TitleAuthorSupervisorDegreeInstitute
Allama Iqbal Open University, Islamabad, Pakistan
MA
International Islamic University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
PhD
University of the Punjab, Lahore, Pakistan
PhD
University of Education, Lahore, Pakistan
PhD
International Islamic University, Islamabad, Pakistan
Allama Iqbal Open University, Islamabad, Pakistan
Allama Iqbal Open University, Islamabad, Pakistan
MS
Riphah International University, Lahore, Pakistan
Allama Iqbal Open University, Islamabad, Pakistan
Mphil
Riphah International University, Faisalabad, Pakistan
Allama Iqbal Open University, Islamabad, Pakistan
Allama Iqbal Open University, Islamabad, Pakistan
Allama Iqbal Open University, Islamabad, Pakistan
Allama Iqbal Open University, Islamabad, Pakistan
Allama Iqbal Open University, Islamabad, Pakistan
REL
COMSATS University Islamabad, Islamabad, Pakistan
Allama Iqbal Open University, Islamabad, Pakistan
Allama Iqbal Open University, Islamabad, Pakistan
PhD
Preston University, Kohat, Pakistan
TitleAuthorSupervisorDegreeInstitute
Showing 1 to 20 of 100 entries

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

ڈاکٹر میر ولی الدین

ڈاکٹر میرولی الدین
افسوس ہے کہ یکم دسمبر ۱۹۷۵؁ء کو نامور فلسفی و صوفی اور مشہور مصنف و معلم ڈاکٹر میرولی الدین صاحب نے اپنے وطن حیدرآباد میں انتقال کیا، وہ اسی (۸۰) کے پیٹے میں تھے، ایک سال سے ان کی علالت کا سلسلہ جاری تھا، مرحوم کی تعلیم جامعہ عثمانیہ حیدرآباد میں ہوئی، یہاں سے فلسفہ میں ایم۔اے کرنے کے بعد لندن تشریف لے گئے، بیرسٹری کی تعلیم کے ساتھ کیمبرج یونیورسٹی سے فلسفہ کی اعلیٰ ڈگری حاصل کی، ۱۹۳۳؁ء میں جامعہ عثمانیہ میں فلسفہ کے استاذ مقرر ہوئے اور پھر اسی شعبہ کے صدر ہوکر ۱۹۶۰؁ء میں ریٹائر ہوئے اور کئی سال سے خانہ نشین ہوگئے تھے، تاہم تصنیف و تالیف کا مشغلہ جاری تھا۔
ڈاکٹر صاحب نے اردو اور انگریزی میں بہت سی کتابیں یادگار چھوڑی ہیں، انگریزی اور عربی کی بعض کتابوں کے ترجمے بھی کئے ان کو دارالمصنفین سے بھی بڑا تعلق تھا، ایک زمانہ میں ان کے مضامین معارف میں برابر شائع ہوتے رہے، ان کی پہلی کتاب ’’فلسفہ کی پہلی کتاب‘‘ یہیں سے چھپی تھی۔ یہ ریپوپارٹ کی پرائمر آف فلاسفی کا اردو ترجمہ ہے جس کو انھوں نے جامعہ عثمانیہ کے سلسلہ نصاب تعلیم کے لئے تیار کیا تھا، ’’رسالہ اخلاقیات‘‘ کے نام سے بھی ایک کتاب میڑک کے نصاب کے لئے لکھی تھی، ’’مراقبات‘‘ ان کی اہم کتاب ہے، یہ بظاہر تو حزب و اور ادکی کتاب معلوم ہوتی ہے مگر نفسیات کے اس مسلمہ اصول کے مطابق کہ انسان پر جس قسم کے خیالات کا غلبہ ہوتا ہے، اسی قسم کے اثرات اس کے خارجی اور باطنی وجود میں بھی لازماً ظاہر ہوتے ہیں، انھوں نے یہ ثابت کیا ہے کہ دینی تعلیمات اور ایمانیات و عقائد پر پختہ یقین و ایمان نہ صرف مذہبی عقیدت کے لحاظ سے بلکہ نفسیاتی اصول سے بھی انسان کی...

POLA PEMBINAAN KEAGAMAAN PESERTA DIDIK MELALUI PROGRAM PALU KANA MAPANDE (PKM) DI KOTA PALU

This study discusses the pattern of religious guidance of learners through PKM program, learning interests, and the implications of religious guidance through PKM program in Elementary School Inpres Perumnas Palu Barat. This research is a qualitative descriptive research based on phenomenological approach, that is describing various events and its relation to learners in certain situations. Data collection is done through observation, interview, and documentation. The results showed that the pattern of religious guidance through PKM program in SDN Gugus IV (SD Inpres Perumnas) was greeted enthusiastically by the students. However, the interest of learners in following religious coaching is different, some are very enthusiastic, but some of them not enthusiastic. The implication of religious guidance through PKM program can correct and improve the ability of learners in reading and writing verses of Al Quran. They can also actualize memorization materials, daily prayers, and understand the procedures of worship in daily life.

Distinguishability Parameters in Graphs

The idea of “distinguishing the vertices of a graph from one another” goes back to the work by Entringer and Gassman [36] and Sumner [81], where the authors posed a problem: which graphs have property that “there is one-to-one correspondence between vertices and their neighbourhoods”. The vertices of such graphs can be distinguished by their neighbourhoods. The idea has demonstrated its fundamental nature through a wide variety of applications associated to graphs in theory of networks, communication, robot navigation, programming a robot in manipulating objects to name a few. Later work on distinguishability parameters of graphs has used ideas different from the work of Sumner. The following approaches to the problem have found more attention than others. In the distance-based approach, each vertex of a connected graph Γ is distinguished from every other vertex of Γ by labeling a subset M of V (Γ) and using the distances between the vertices of Γ and those of M to construct a one-to-one function on V (Γ). The minimum cardinality of set M is called the metric dimension of Γ. In the symmetry breaking approach, we choose a set of vertices of Γ which has only the trivial automorphism in its stabilizer (only the trivial automorphism fixes the vertices in S). Another idea in symmetry breaking approach is that we choose a set D of vertices and color them with the minimum number of colors. In both of the ideas, the automorphism group of graph Γ is destroyed and we are assured that every vertex of graph can be distinguished. The minimum cardinality of set S is called the fixing number of Γ and the minimum number of colors required to color the vertices of set D is called the distinguishing number of Γ. In the location-domination approach, we choose a dominating set L of a graph Γ such that every vertex of Γ outside the dominating set is uniquely distinguished by its neighborhood within the dominating set. In the covering code approach, we find a set of vertices whose neighborhoods uniquely overlap at any vertex of graph Γ. The brief details of our contributions to this area are as follows: We define a new distinguishability parameter ‘fixed number’ of graphs that gives us the minimum number of vertices with random choice such that fixing those vertices destroys the automorphism group of the graph. We extend the study of weak total resolving set, weak total metric dimension and weak total resolving number of graphs. We also study well-known distinguishingability parameters locating-dominating sets for functigraphs and locating-dominating sets, identifying codes and distinguishing number for non-zero component graphs associated to finite vector space. A set of vertices S of a graph Γ is called a fixing set of Γ, if only the trivial automorphism of Γ fixes every vertex in S. The fixing number of a graph is the smallest cardinality of a fixing set. The fixed number of a graph Γ is the minimum number γ, such that every subset of vertices of Γ with cardinality γ is a fixing set of Γ. A graph Γ is called a γ-fixed graph, if its fixing number and fixed number are both γ. We study the fixed number of a graph and give a construction of a graph of higher fixed number from a graph of lower fixed number. We find bound on γ in terms of the diameter of a distance-transitive γ-fixed graph. A resolving set of vertices M ⊆ V (Γ) is called a weak total resolving set of Γ, if for each vertex σ ∈ M (symbols σ, ρ are used to represent the vertices of a graph) and for each ρ ∈ V (Γ) \ M, there is one element in M \ {σ} that resolves σ and ρ. The smallest cardinality of a weak total resolving set is called the weak total metric dimension of Γ. In this thesis, we extend the study of weak total resolving sets. We give some characterization and realization results on weak total metric dimension and weak total resolving number. We find weak total metric dimension of tree graph. We also define randomly weak total γ-dimensional graph and study its properties. We find weak total resolving sets and weak total metric dimension of functigraphs of some families of graphs. A subset L of the vertices of a graph Γ is called a locating-dominating set of Γ if for every two distinct vertices σ, ρ ∈ V (Γ) \ L, we have ∅ 6= NΓ(σ) ∩ L 6= NΓ(ρ) ∩ L 6= ∅. The location-domination number of Γ is the minimum cardinality of a locating-dominating set in Γ. Let Γ1 and Γ2 be the disjoint copies of a graph Γ and η : V (Γ1) → V (Γ2) be a function. A functigraph FΓ η consists of vertex set V (Γ1) ∪ V (Γ2) and edge set E(Γ1) ∪ E(Γ2) ∪ {σρ : ρ = η(σ)}. We study the variation of location-domination number in passing from Γ to FΓ η and find its sharp lower and upper bounds. We also study the location-domination number of functigraphs of complete graphs for all possible definitions of function η. We also obtain the location-domination number of functigraphs of a family of spanning subgraphs of complete graphs. We investigate the problem of covering the vertices of non-zero component graphs associated to finite vector spaces as introduced by Das [33], such that we can uniquely identify any vertex by examining the vertices that cover it. We use locating-dominating sets and identifying codes, which are closely related concepts for this purpose. We find the location-domination number and the identifying number of the graph and study the exchange property for locatingdominating sets and identifying codes. We extend the study of properties of automorphisms of non-zero component graphs associated to finite vector spaces. We prove that the symmetric group of basis vectors is isomorphic to the automorphism group of the graph. We find the distinguishing number of the graph for both of the cases, when number of field elements are 2 and more than 2.