روٹی سمجھ چنگیر والی چن ہو گئی
تھگڑی سو جو نال بدن ہو گئی
لگا عشق میں رن پرنا آندی
اگوں بالاں دی ادھی درجن ہو گئی
پردہ مکھ توں الٹیا جس ویلے
جھلک چودھویں دا ہک چن ہپو گئی
یونیورسٹی دی کڑی پرنا آندی
مکلاوا آندیاں سار ان بن ہو گئی
ترلے کرنا ایں کیوں وڈیریاں دے
ایڈی وڈی کہیڑی تینوں بھن ہو گئی
روندا آیا ایں تے روندا ٹر جاسیں
دنیا کتھوں ایہہ تیری سجن ہو گئی
بیوی لڑدی رہندی سی نال میرے
دتا خرچہ تے اوہ مکھن ہو گئی
پایا سوہنیاں نے صرف اک پھیرا
رونق ویکھ وچ کیویں چمن ہو گئی
دنیا مال نہ دولت کم کسے
دولت عمل دی نال کفن ہو گئی
والضحیٰ چہرہ والیل زلفاں
رحم دلی وی سنگ بدن ہو گئی
پنجابی لکھنا بولنا گھٹ ہویا
لگ دا پیا اے بے وطن ہو گئی
بچہ اپنا ہی سوہنا لگ دا اے
لگے سوہنی پرائی جو رن ہو گئی
تناں شئیاں توں اصل وچ ھین جھگڑے
زر، زمین تے تیسری زن ہو گئی
White gold is a man-made bright, white and antioxidant compound, made by mixing platinum and palladium in gold or silver, nickel and some copper in gold, and when yellow gold is added to the various metallic compounds above, it turns white. White Gold was invented in the early 19th century, then it was a mixture of platinum and palladium, but nowadays white gold is a mixture of nickel, platinum, palladium and magnesium, while sometimes it contains copper, zinc and silver. It turns white with color. First White Gold was introduced by Germany in 1912 for sale in the market and then by 1920 White Gold gained popularity as an alternative to platinum. Nowadays white gold is more popular, more favored and is more expensive than yellow gold. White gold is actually yellow gold, with addition of various metals it turns to white so it will apply all the rules that Islam has applied to gold and it is not permissible for a Muslim man to wear its ornaments. However, it is permissible for a woman to wear all kinds of jewelry and Zakat will be obligatory on the man and woman who have the white gold according to the quantity limit prescribed by the prophet (SAW).
In this thesis Noether symmetries are used for the classi cation of plane symmetric, cylindrically symmetric and spherically symmetric static spacetimes. We consider general metrics for these spacetimes and use their general arc length minimizing Lagrangian densities for the classi cation purpose. The coe cients of the metric in case of plane symmetric static spacetime are general functions of x while the coe cients of cylindrically symmetric and spherically symmetric static spacetimes are general functions of the radial coordinate r. The famous Noether symmetry equation is used for the arc length minimizing Lagrangian densities of these spacetimes. Noether symmetries and particular arc length minimizing Lagrangian densities of plane symmetric, cylindrically symmetric and spherically symmetric static spacetimes are obtained. Once we get the particular Lagrangian densities, we can obtain the corresponding particular spacetimes easily. This thesis not only provides classi cation of the spacetimes but we can also obtainrst integrals corresponding to each Noether symmetry. Theserst integrals can be used to de ne conservation laws in each spacetime. By using general arc length minimizing Lagrangian for plane symmetric, cylindrically symmetric and spherically symmetric static spacetimes in the Noether symmetry equation a system of 19 partial di erential equations is obtained in each case. The solution of the system in each case provides us three important things; the classi cation of the spacetimes, the Noether symmetries and the correspondingrst integrals which can be used for the conservation laws relative to each spacetime. Energy and momentum, the de nitions of which are the focus of many investigations in general relativity, are important quantities in physics. Since there is no invariant de - nitions of energy and momentum in general relativity to de ne these quantities we use the ii iii approximate Noether symmetries of the general geodesic Lagrangian density of the general time conformal plane symmetric spacetime. We use approximate Noether symmetry condition for this purpose to calculate the approximate Noether symmetries of the action of the Lagrangian density of time conformal plane symmetric spacetime. From this approach, those spacetimes are obtained the actions of which admit therst order approximation. The corresponding spacetimes are the approximate gravitational wave spacetimes which give us information and insights for the exact gravitational wave spacetimes. Some of the Noether symmetries obtained here carry approximate parts. These approximate Noether symmetries can further be used tond the correspondingrst integrals which describe the conservation laws in the respective spacetimes. Some of the vacuum solutions of Einsteineld equations for plane symmetric, cylindrically symmetric and spherically symmetric static spacetimes have also been explored.