Search or add a thesis

Advanced Search (Beta)
Home > Migration Outflow and its Impact on Pakistans Economy

Migration Outflow and its Impact on Pakistans Economy

Thesis Info

Author

Muhammad Zubair

Supervisor

Talat Anwar

Institute

Allama Iqbal Open University

Institute Type

Public

City

Islamabad

Country

Pakistan

Thesis Completing Year

1999

Thesis Completion Status

Completed

Page

63

Subject

Economics

Language

English

Other

Call No: 331.5 MUM; Publisher: Aiou

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676710208557

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

سلطان کھاروی دی حیاتی

سلطان کھاروی دی حیاتی

جنم

سلطان کھار وی 1965ء نوں پنڈ کھارا ضلع گوجرانوالاوچ پیدا ہوئے ۔

خاندانی پچھوکڑ

ساڈا پیارا دیس جیہدا ناں چوہدری رحمت علی نے رکھیا جیہدا سفنا علامہ اقبال نے ویکھیا تے جینہوں وجود وچ لیائون لئی قائد اعظم محمد علی جناح نے اپنیاں نیندراں دی قربانی دتی ۔ پاکستان تے بن گیا پر ظلم ایہہ ہویا جے پنجاب وچ لکیر مار دتی گئی ۔پنجاب د و ٹوٹے ہو گیا۔اک مشرقی تے اک مغربی پنجاب، جیہدے وچ اسیں تسیں رہندے آں ۔مشرقی پنجاب دے  مشہو ر ضلعے جالندھردے پنڈ تلوں دے نیڑے تیڑے ایہہ پنڈ اج وی موجود اے ۔ اوس پنڈ دا ناں اے کوٹ بادل خاں ۔بادل خاں کوئی سر کڈھ پٹھان سی جیہدی قبر اج وی کوٹ بادل خاں وچ موجود اے ۔ایس کوٹ بادل خاں توں 1947ء دی ونڈ مگروں اک خاندان ہجرت کر کے پاکستا ن آ یا ۔خاندان دے وڈے داناں سی (چوہدری بوڑا)جیہڑے سلطان کھاروی دے دادا سن ۔ چوہدری بوڑا 1958ء وچ فوت ہو ئے ۔اوہناں نوں کھارے دا نمبر دار بنا دتا گیا سی ۔ اوس سمے جدوں لوکائی اپنے اپنے ساکاں انگاں دی تلاش وچ ایدھر اودھر بھٹکدی پھر دی سی ۔

سلطان کھار وی دا پنڈ کھارا

ضلع شیخوپورہ دے مشہور پنڈ جنڈیا لا شیر خاں توں شمال نوں جائیے تے باراں تیراں کلومیٹر تے اک پنڈ اے ۔جدوں پاکستان بنیا تے ایس پنڈ وچ کوئی سو گھر وی نئیں سی ۔ایس پنڈ دا ناں اے ’’کھارا ‘‘ایہہ پنڈ ضلع گوجرانوالادی حدود وچ اے تے پنڈ کھارا وچ لنگھن والی سڑک سدھی گوجرنوالا دے اعوان چوک نال جا لگدی اے ۔

 

چوہدری بوڑا دی آل اولاد

توظيف اللون ودلالته في (المحلى بـ هل) لـ"مهدي النُهيْريّ"

يتناول هذا البحث التوظيف اللوني في شعر الشاعر مهدي النُهيْريّ اعتماداً على منهج البحث الوصفي التحليلي الذي يقوم على استنطاق اللون ومواضعه في قصائد النُهيْريّ، ومحاولة استنطاق النصوص الشعرية التي تحمل ألفاظ الألوان وبيان دلالاتها، وقد جاء البحث موزعا على خلاصة البحث، ومقدمة البحث، ونبذة عن حياة الشاعر، وتعريف موجز للّون لغة واصطلاحا، ثم خلفية البحث التي هي مادة البحث الرئيسة وقد اقتصر البحث على دراسة الألوان الرئيسية في المجموعة الشعرية(المحلى بـ هل)، يتلوها خاتمة بالنتائج التي توصل إليها البحث مع قائمة بالمصادر والمراجع. ولتحقيق أهداف الدراسة فقد استخدم الباحث المنهج الوصفي التحليلي، وتوصلت الدراسة إلى مجموعة من النتائج أهمها: مثَّل اللون تصويراً جمالياً امتزج مع نصه الشعري. واستعمل الشاعر التقنية البصرية اللونية كأداة في إنتاج النص الإبداعي الشعري بحرفية وفنية متقنتين، فكان الرسام الشاعر والعكس صحيح.

Some Aggregation Operators Based on Pythagorean Fuzzy Numbers and Their Applications in Decision Making Problems

The study of Multi-criteria decision making is that to identify and indicates the best option from all possible available options. Making a decision indicates that there are alternatives choice to be considered, and in such a case we want not only to identify as several of these alternatives as possible but to select that one which is more suitable for our aims, objectives, wants, values, and so on. Thus by decision making we have solve several problems in daily life. For this purpose Zadeh (Zadeh, 1965) presented the concept of fuzzy set theory. In fuzzy set theory he only discussed and conferred the membership function, called the degree of membership. After the presenting of FS theory, Zadeh also developed many applications of the fuzzy set theory in many fields, such as engineering, management science and computer science etc. After the positive and progressive applications and compensations of fuzzy set theory, Atanassov (Atanassov, 1986) utilized the theory of PF and industrialized the idea of a new set known as intuitionistic fuzzy set. IFS having each member in ordered pair form. The theory of IFS is more influential as compared to the theory of FS for the solution of problems. After the presenting and introducing of the theory of IFS, Atanassov and Gargov (Atanassov and Gergov, 1989) used the concep of IFS and presented the idea of another set, called interval-valued intuitionistic fuzzy set, having two elements such as membership and non-membership, whose values are intervals not real numbers.IFS and IVIFS become more popular and more attractive by introducing the various kinds of aggregation operators, information measures and employed them to solve the decision-making problems under the different environments. IFS and IVIFS become more popular and more attractive after the introducing. Several operators are developed using IFVs and IVIFVs. However, it has a shortcoming and limitation, the limitation is that this study is only valid for that situation where the sum of their degrees is less than or equal to one. But there are many problems, which cannot be solved by this study. In order to resolve this type of problems, which are accure in daily life and cannot be solving by IFS, Yager (Yager, 2013) develop and presented the notion of Pythagorean fuzzy set. PFS is the general form of IFS, because IFS is special case of PFS. Many operators have been introduced after the familiarizing and introducing of PFS. In PFS each member can be presented in ordered pair form, where sum of their square is less than are equal to one X. Peng, Y. Yang (Peng and Yang, 2015) presented the idea of interval-valued Pythagorean fuzzy set. This thesis contains eight chapters, which are discussed in the following in detail. In chapter one, we develop some basic and important definitions, which are directly related our work such as, fuzzy set (FS), intuitionistic fuzzy set (IFS),score function, accuracy function, interval-valued intuitionistic fuzzy set (IVIFS), Pythagorean fuzzy set (PFS), interval-valued Pythagorean fuzzy set (IVPFS), and several operators which are already developed. In chapter two, we explore the idea of Pythagorean fuzzy Einstein hybrid averaging (PFEHA) operator along with their properties, namely idempotency, boundedness and monotonicity. To develop the above method, we applied the proposed operator and method to multi-attribute group decision-making to show the validity, practicality and effectiveness of the new approach. In chapter three, we explore the idea of Pythagorean fuzzy Einstein weighted geometric (PFEWG) operator, Pythagorean fuzzy Einstein hybrid geometric (PFEHG) operator along with their properties. In chapter four, we explore the idea of generalized Pythagorean fuzzy Einstein hybrid geometric (GPFEHG) operator, and generalized Pythagorean fuzzy Einstein hybrid averaging (GPFEHA) operator. To improve and develop the above concept, we present some of their basic properties such as, idempotency, boundedness and monotonicity. Finally, we give a numerical example to show the effectiveness and flexibility of the proposed method.All of the above chapters, we established many operators using PFVs, having a single valued for member and non-membership. But in chapter five, we explore the idea of interval-valued in which the member and nonmembership are not single valued but they accared in the form of closed interval. Thus we present the idea of IVPFEWA operator, IVPFEOWA operator and IVPFEHA operator. At the end of the chapter the above proposed operators have been applied to group decision-making problems to show their weight, practicality and efficiency. Like in chapter five, in chapter six, we introduce the notion of a series of geometric interval-valued operators, namely IVPFEWG operator, IVPFEOWG operator and IVPFEHG operator along with their properties namely, commutativity, idempotency, boundedness and monotonicity. In chapter seven, we introduce the notion three generalized operators using IVPVSs, such as GIVPFEWA operator, GIVPFEOWA operator and GIVPFEHA operator.Finally the proposed operators have been applied to decision making problems to show the validity, practicality and effectiveness of the new approach. Actually the operators proposed in chapter five, are the special cases of the new operators developed in chapter seven respectively. In chapter eight, we introduce the notion three generalized operators using IVPVSs, such as GIVPFEWG operator, GIVPFEOWG operator and GIVPFEHG operator. Actually the operators proposed in chapter six, are the special cases of the new operators and methods developed in chapter eight respectively.Finally the proposed operators have been applied to decision making problems to show the validity, practicality and effectiveness of the new approach.