Search or add a thesis

Advanced Search (Beta)
Home > Prediction of Lattice Constant of the Crystal Structure of Perovskites Materials by Using Machine Learning Techniques

Prediction of Lattice Constant of the Crystal Structure of Perovskites Materials by Using Machine Learning Techniques

Thesis Info

Author

Farooq Ahmad, Muhammad

Supervisor

Abdul Majeed

Institute

Allama Iqbal Open University

Institute Type

Public

City

Islamabad

Country

Pakistan

Thesis Completing Year

May, 2011

Thesis Completion Status

Completed

Page

70

Language

English

Other

Call No: 006.31 FAP; Publisher: Aiou

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676710275949

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

قدرتی وسائل اور ان کا استعمال: اسلامی اور سائنسی علوم کے تناظر میں

جدید انسان کی سرمایہ دارانہ اور مادیت پسند فکر نے قدرتی ماحول اور قدرتی وسائل کا بری طرح استحصال کیا ہے اور حیاتِ انسانی وحیوانی کی بقا کو تباہی کے دہانے پر پہنچا دیا ہے۔ حضرت انسان کی غفلت اور لا پرواہی سے قدرتی وسائل و ذرائع کی بقا کا مسئلہ اس وقت پوری دنیا کے لئے سنگین شکل اختیار کرگیا ہے۔یہ بات روز ِروشن کی طرح عیاں ہے کہ جدید انسان نے ماحول اور اس میں پائے جانے والے قدرتی وسائل کے تحفظ کو یکسر نظرانداز کردیا ہے ۔ جس کی بنا پر قدرتی وسائل ہوا، پانی ،معدنیات، حیوانات ،نباتات اور زمین کی طبعی ، کیمیائی اور حیاتیاتی خصوصیات میں ناپسندیدہ اور نامناسب تبدیلیاں پیدا ہو تی جار ہی ہیں، اس طرح ماحولیاتی تبدیلی( Climate Change ( ، گلوبل وارمنگ (Global Warming) اور ماحولیاتی آلودگی (Environmental Pollution ) کا مسئلہ پیداہوگیا ہے۔ ٹریٹمنٹ پلانٹس کی تنصیب کے بغیر نئے نئے کارخانےقائم ہورہے ہیں۔ ان صنعتی اداروں میں ماحولیاتی سہولیات کی عدم موجودگی کی وجہ سے ماحول میں گرین ہاؤسز گیسزکی مقدار بڑھتی جارہی ہے اور یوں قدرتی ماحول بری طرح متاثر ہورہاہے۔
یہ بات طے شدہ ہے کہ اللہ تعالیٰ کی تخلیق کردہ ضروریات حیات یعنی قدرتی وسائل میں سے ہوا،پانی ،نباتات ،حیوانات، صاف ماحول پر انسانی زندگی کا انحصار اتنا زیادہ ہے کہ ان کے بغیر کوئی انسان زندگی گزارنے کا تصور بھی نہیں کر سکتا ۔ جبکہ عالمی سطح پر موسمیاتی تبدیلیوں کے اثرات ہر گزرتے دن کے ساتھ ساتھ شدید سے شدید تر ہوتے جارہے ہیں ۔ ایک تازہ ترین عالمی تحقیقی رپورٹ بتاتی ہےکہ عالمی موسمیاتی تبدیلی سے 2 دہائیوں میں عالمی معیشت کو 16 ہزار ارب ڈالر کا نقصان پہنچ چکا ہے۔ستم ظریفی کی بات یہ ہے سب سے زیادہ جانی و معاشی نقصان ترقی پذیر اور غریب ممالک کو اٹھانا پڑ...

زیب و زینت میں لباس کی شرعی حیثیت

Fashionable dressing is a very sensitive issue for females, it creates sometimes confusion that what are the limits and orders of “Shariah” for it. So I try to inform all females a proper dress code in the light of Islamic “Shariah”. Islam is not against the fashion but it says that it should be only for “Mahrams” and it should not be out of limits. So the article deals to clarify needs and importance of dress, dress codes in Islam as well as the usage of different type of dressings like thin, fitted, expensive and costly, male dresses, uneven (not according to Islam) etc. It will clarify the confusion which makes us confused in fashionable dressing and how much it is allowed to keep them in use. Islam has provided guidance in dressing like in any other fields of life as well as fashion is allowed by Allah as blessing but according to the rules and regulation of Islamic “Shariah” and do not try to go against it. That is why we have to be aware and careful while fashioning.

Yield Forecasting of Maize for Different Agronomic Practices under Climate Change and Variability Using Simulations and Remote Sensing

Yield forecasting is becoming increasingly important in the context of climate variability and change using approaches like remote sensing and crop modeling. Climate variability and change are affecting crops and efficiency of input resources. The situation is demanding efficient management of input resources. Changing climate is also affecting current production technology which needs modification using modern tools. Two field experiments were conducted at Water Management Research Center, University of Agriculture Faisalabad, Pakistan. Field experiments addressed above mentioned issues. The first experiment included full (100%) and three reduced levels (80%, 60% and 40%) of irrigation with four levels of nitrogen (160, 200, 240 and 280 kg ha-1) at different critical growth stages of maize. Second experiment involved four sowing dates (i.e.27 January, 16 February 8 March and 28 March) and three maize hybrids (i.e. P-1543, DK6103 and NK8711) during the years 2015 and 2016. Different system approaches were used to optimize the volume of irrigation, amount of nitrogen (N) and sowing date for maize hybrids. CERES-Maize model was calibrated and evaluated with second experiment. Calibrated model was used to explore the effects of climate variability and climate change (CC) at regional scale. Different adaption strategies were developed to mitigate the negative effects of climate change. Remote sensing framework was used for regional yield forecasting that can assess seasonal and interannual variability. In first experiment results from model and economic analysis showed that the N rates of 235, 229, 233, and 210 kg ha-1 were the most economical optimum N rates to achieve the economic yield of 9321, 8937, 5748 and 3493 kg ha-1 at 100%, 80%, 60% and 40% irrigation levels, respectively. The optimum level of irrigation was 250 mm. The results of second experiment revealed that grain yield was continuously decrease with delay in Planting date, among maize hybrids Poineer-1543 performed best in spring season. Model parametrization results showed a reasonably good result in prediction of biological and grain yield with RMSE values of 963 kg ha-1 and 451 kg ha-1. Different GCMs were used for understanding the CC impacts, which indicated that there would be increase of 3.4°C in maximum and 3.8°C in minimum temperature in hotdry GCM. The reduction in maize yield due to rise in temperature will be 27% under mid-century (2040-2069). Different adaptations options could be used with RAPs then maize yield would be increased by 15%.Landcover classification of maize were done by Machine Learning algorithms which estimate 14% less area reported by Reporting Service (CRS) of Punjab Pakistan for 2015 and 2016. For yield forecasting, seasonal multitemporal, a total of 8 LST and NDVI values for 64 farms were taken to develop model. Model was used to predict the yield of previous 10 year (2007-2016) which showed a high accuracy with mean % error of 1.25. Seasonal mean Tmax and Tmin of 10 years with predicted yield showed a negative relationship with Tmax. (R2= 0.76) and Tmin. (R2= 0.69). It can be concluded from the study that modern tools are very helpful to optimize input resources to ensure food security.