Search or add a thesis

Advanced Search (Beta)
Home > Role of Private Sector in Expansion of Primary Education in Rawalpindi City M. Phil Thesis

Role of Private Sector in Expansion of Primary Education in Rawalpindi City M. Phil Thesis

Thesis Info

Author

Maqsooda Akbar

Supervisor

Zulkaif Ahmad

Program

Mphil

Institute

Allama Iqbal Open University

Institute Type

Public

City

Islamabad

Country

Pakistan

Thesis Completing Year

1998

Thesis Completion Status

Completed

Page

141

Subject

Education

Language

English

Other

Call No: 370.9549142 MAR; Publisher: Depm, Aiou

Added

2021-02-17 19:49:13

Modified

2023-02-19 12:33:56

ARI ID

1676710400410

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

جہالت ترقی کی دشمن ہے

جہالت ترقی کی دشمن ہے
جہالت اور اس کے کئی ہم آواز الفاظ جیسے حماقت، عداوت، لعنت ،نفرت ایک سلیم الطبع شخص کے لیے کوئی اہمیت نہیں رکھتے بلکہ کئی اعتبار سے وہ ان سے بیگانہ رہتا ہے۔ ان میں بالخصوص جہالت ایک ایسا لفظ ہے کہ جو اس سے مانوس ہو جائے، جہالت کے پردے کو چاک نہ کرے، جہالت کے درخت کی آبیاری کرتا رہے جہالت کے نخلِ مضر کو خس وخاشاک سے صاف کرتار ہے، جہالت کے ناسور سے علم وحکمت کے نشتر سے پیپ نہ نکالے، اور اس کی بھینٹ چڑھ جائے تو اس کی جسمانی، روحانی ، اقتصادی، معاشی، معاشرتی ہر قسم کی ترقی رک جاتی ہے اور قعرِ مذلّت میں گر کر سسکیاں لے لے کر اپنی زندگی گزار دیتا ہے۔
تاریخ کی ورق گردانی کریں تو یہ بات مترشحّ ہوتی ہے کہ انسان نے جو بھی ترقی کی وہ جہالت کی چادر کوتار تار کر کے کی ہے۔ علم ، واقفیت، آگاہی سے ہی رفعتوں اور بلندیوں پر اپنی کمندیں ڈالی ہیں۔ اور جس نے جہالت کے بستر استراحت پر آرام کیا، جس نے جہالت کی شراب سے اپنے اعضائے جسمانی کو پرسکون رکھنے کی سعی ٔنا تمام کی اس کوزندگی میں کبھی سکون نہ ملا بلکہ در بدر کے دھکے ملے۔
جہالت کی چکی میں پستا رہا
جہالت کے موذی سے ڈستا رہا
علم سے مربوط اور وابستہ ہونے کی بنا پر انسان کو اشرف المخلوقات کہا گیا ہے۔ جہالت سے دوری اورعلم سے قربت ہی کی بدولت تو انسان کو فرشتوں پر بھی برتری اور فضیلت حاصل ہوئی، اسی کی بدولت انسان منصبِ خلافت پر فائز کیا گیا۔ اللہ تعالیٰ نے انسان کے دل و دماغ کو بہترین صلاحیتوں سے نوازا ہے ان صلاحیتوں کو بروئے کار لاتے ہوئے وہ مسلسل ارتقاء کی منزلیں طے کرتا...

قرآن كا سات حروف پر نازل ہونا

According to Hadith literature, the Quran is revealed in seven Ahruf, the plural of harf. Ahruf are distinct from Qira'at. This is a very momentous and lengthy topic, indeed, one of the most complicated discussions on the sciences of the Qur’an. It is very difficult to discuss it in full details in this work but the important things about it are being presented in this article. The first problem we face with this Hadith is what is meant by the Revelation of Qur’an on Seven “Ahruf”? We find a great deal of difference of opinion on this subject. Up to thirty five different views have been quoted by Ibn al-‘Arabi and others. Some of the popular views are quoted in this article. The context of these narrations indicates clearly that the word ‘seven’ does not denote an unspecified large number but it denotes the specific numerical value ‘seven’. Hence, in the light of these narrations this view (that seven means more than that) does not hold good and the majority of scholars reject it. In the vast collections of Hadiths, we do not find any mention of difference in the Qur’an other than that accounted for in “ahruf”. How then may we explain differences in reading and “ahruf”? I have not been able to find a satisfactory answer to this confusion with the advocates of this theory.

Inequalities for Bregman and Burbea-Rao Divergences and Related Results

Mathematical inequalities play an important role in almost all branches of mathe- matics as well as in other areas of science. The basic work ”Inequalities” by Hardy, Littlewood and Polya appeared 1934 and the books ”Inequalities” by Beckenbach and Bellman published in 1961 and ”Analytic inequalities” by Mitronovic published in 1970 made considerable contribution to this field and supplied motivation, ideas, techniques and applications. This theory in recent years has attached the attention of large number of researchers, stimulated new research directions and influenced various aspect of mathematical analysis and applications. Since 1934 an enormous amount of effort has been devoted to the discovery of new types of inequalities and the ap- plication of inequalities in many part of analysis. The usefulness of Mathematical inequalities is felt from the very beginning and is now widely acknowledged as one of the major deriving forces behind the development of modern real analysis. This Ph.D thesis deals with the inequalities for Bregman and Burbea-Rao divergences and some of its related inequalities, namely Jensen’s inequality, majorization inequality, Slater’s inequality and inequalities obtained by Mati ́ and Peˇari ́. c c c The first chapter contains a survey of basic concepts, indications and results from theory of convex functions and theory of inequalities used in subsequent chapters to which we refer as the known facts. In the second chapter we give an improvement of Jensen’s inequality for convex monotone function and various applications for related inequalities and divergences. ˇ In the third chapter we give Sapogov’s extension of Cebyˇev’s inequality and use this extension to prove majorization inequality. We also give mean value theorems for majorization inequality. As application, we present a class of Cauchy’s means and prove logarithmic convexity for differences of power means. In the fourth chapter we generalize some results of Mati ́ and Peˇari ́. We use a c c c log-convexity criterion and establish improvements and reverses of Slater’s and related inequalities. In the fifth chapter we give Bregman and Burbea-Rao divergences for double in- tegrals and matrices. We derive mean-value theorems for the divergences induced by C 2 -functions. As application, we present certain Cauchy type means. We prove pos- itive semi-definiteness of the matrices generated by these divergences which implies exponential convexity and log-convexity of the divergences. Also show the mono- tonicity of the corresponding means of Cauchy type. At the end we consider integral power means. In the sixth chapter we give several results for functions of two variables and majorized matrices by using continuous convex functions and Green function. We prove mean value theorems and give generalized Cauchy means. We give applications of those generalized means and show that they are monotonic. We prove positive semi-definiteness of matrices generated by differences deduced from the majorization inequalities for double integrals and majorized matrices which implies exponential convexity and log-convexity of these differences.