آہ! مولانا حمیدالدین
الصلوٰۃ علیٰ ترجمان القرآن (مفسر قرآن کی نماز جنازہ) وہ صدا ہے جو آج سے ساڑے چھ سو برس پیشتر مصرو شام سے چین کی دیواروں تک ابن تیمیہ رحمۃ اﷲ علیہ کی نماز جنازہ کے لیے بلند ہوئی تھی، حق یہ ہے کہ یہ صدا آج پھر بلند ہو اور کم از کم ہندوستان سے مصر و شام تک پھیل جائے کہ اس عہد کا ابن تیمیہ ۱۱؍ نومبر ۱۹۳۰ء (۱۹؍ جمادی الثانیہ ۱۳۴۹ھ) کو اس دنیا سے رخصت ہوگیا، وہ جس کے فضل و کمال کی مثال آئندہ بظاہر حال عالم اسلامی میں پیدا ہونے کی توقع نہیں، جس کی مشرقی و مغربی جامعیت عہد حاضر کا معجزہ تھی، عربی کا فاضل یگانہ اور انگریزی کا گریجویٹ، زہد و ورع کی تصویر، فضل و کمال کا مجسمہ، فارسی کا بلبل شیراز، عربی کا سوقِ عکاظ، ایک شخصیت مفرد، لیکن ایک جہانِ دانش، ایک دنیا ئے معرفت! ایک کائنات علم! ایک گوشہ نشین مجمعِ کمال، ایک بینواسلطان ہنر، علوم ادبیہ کا یگانہ، علوم عربیہ کا خزانہ، علوم عقلیہ کا ناقد، علوم دینیہ کا ماہر، علوم القرآن کا واقف اسرار، قرآن پاک کا دانائے رموز، دنیا کی دولت سے بے نیاز، اہل دنیا سے مستغنی، انسانوں کے ردوقبول اور عالم کے داد و تحسین سے بے پروا، گوشہ علم کا معتکف اور اپنی دنیا کا آپ بادشاہ، وہ ہستی جو تیس برس کامل قرآن پاک اور صرف قرآن پاک کے فہم و تدبر اور درس و تعلیم میں محو، ہر شے سے بے گانہ، اور ہر شغل سے ناآشنا تھی، افسوس کہ ان کا علم ان کے سینہ سے سفینہ میں بہت کم منتقل ہوسکا، مسودات کا دفتر چھوڑا ہے، مگر افسوس کہ اس کے سمجھنے اور ربط و نظام دینے کا دماغ اب کہاں، جو چند رسالے چھپے وہ عربی میں ہیں، جن...
Demography, along with geography, has always figured in the making of nations and in inter-state relationships. But perhaps never so critically as in the case of Pakistan. Indeed, in all the annals of its proto-history and existential career, demography and Pakistan have been interminably entwined. This may sound incredible, even inexplicable.
Time is deemed as paramount aspect in Information Retrieval (IR) and it pro foundly influence the interpretation as well as the users intention and expectation. The temporal patterns in a document or collection of documents plays a central role in the effectiveness of IR systems. The accurate discernment plays an immense role in persuading the time-based intention of a user. There exists a plethora of documents on the web wherein most on them contain the divergent temporal pat terns. Assimilation of these temporal patterns in IR is referred to as Temporal Information Retrieval (TIR). The comprehension of TIR systems is requisite to address the temporal intention of a user in an efficient manner. For time specific queries (i.e. query for an event), the relevant document must relate to the time period of the event. To attenuate the problem, the IR systems must: determine whether the document is temporal specific (i.e. focusing on single time period) and determine the focus time (to which the document content refers) of the documents. This thesis exploits the temporal features of the news documents to improve the retrieval effectiveness of IR systems.As best to our knowledge, this thesis is the pioneer study that focuses on the problem of temporal specificity in news docu ments. This thesis defines and evaluate novel approaches to determine the tem poral specificity in news documents. Thereafter, these approaches are utilized to classify news documents into three novel temporal classes. Furthermore, the study also considers 24 implicit temporal features of news documents to classify in to; a) High Temporal Specificity (HTS), b) Medium Temporal Specificity (MTS), and c) Low Temporal Specificity (LTS) classes. For such classification, Rule-based and Temporal Specificity Score (TSS) based classification approaches are proposed. In the former approach, news documents are classified using a proposed set of rules that are based on temporal features. The later approach classifies news documents based on a TSS score using the temporal features. The results of the proposed approaches are compared with four Machine Learning classification algorithms: Bayes Net, Support Vector Machine (SVM),Random Forest and Decision Tree. x The outcomes of the study indicate that the proposed rule-based classifier outper forms the four algorithms by achieving 82% accuracy, whereas TSS classification achieves 77% accuracy. In addition, to determine the focus time of news documents, the thesis contem plates the temporal nature of news documents. The type and structure of doc uments influence the performance of focus time detection methods. This thesis propose different splitting methods to split the news document into three logical sections by scrutinizing the inverted pyramid news paradigm. These methods in clude: the Paragraph based Method (PBM), the Words Based Method (WBM), the Sentence Based Method (SBM), and the Semantic Based Method (SeBM). Temporal expressions in each section are assigned weights using a linear regres sion model. Finally, a scoring function is used to calculate the temporal score for each time expression appearing in the document. Afterwards, these temporal expressions are ranked on the basis of their temporal score, where the most suit able expression appears on top. Two evaluation measures are used to evaluate the performance of proposed framework, a) precision score (P@1, P@2) and average error years. Precision score at position 1 (P@1) and position 2 (P@2) represent the correct estimation of focus at the top 2 positions in the ranked list of focus time whereas, average error year is the distance between the estimated year and the actual focus year of news document. The effectiveness of proposed method is evaluated on a diverse dataset of news related to popular events; the results re vealed that the proposed splitting methods achieved an average error of less than 5.6 years, whereas the SeBM achieved a high precision score of 0.35 and 0.77 at positions 1 and 2 respectively. The overall findings presented in this thesis demonstrate that the valuable tempo ral insights of documents can be used to enhance the performance of IR systems. The time aware information retrieval systems can adopt these findings to satisfy the user expectation for temporal queries.