Search or add a thesis

Advanced Search (Beta)
Home > Vocabulary Teaching Through Mnemonic Devices at Intermediate Level

Vocabulary Teaching Through Mnemonic Devices at Intermediate Level

Thesis Info

Author

Nazia Mashir Bajwa

Supervisor

Umar Farooq

Institute

Allama Iqbal Open University

Institute Type

Public

City

Islamabad

Country

Pakistan

Thesis Completing Year

2006

Thesis Completion Status

Completed

Page

114.;

Subject

English

Language

English

Other

Call No: 428 NAV; Publisher: Aiou

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676710657009

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

مولانا ابوالکلام آزاد

آہ! ترکش مارا خدنگ آخریں
واحسرتا!ابھی حضرت شیخ ؒکی جدائی کاغم تازہ ہی تھا اور امتدادِ روزگار کا مرہم اس غم کی جراحت سامانیوں کوکم نہیں کرسکا تھا کہ اچانک مولانا ابوالکلام آزاد کی وفات حسرت آیات کاسانحۂ جاں گداز پیش آگیا۔اناﷲ واناالیہ راجعون۔
خامہ انگشت بدنداں کہ اسے کیا لکھیے
ناطقہ سر بگریباں کہ اسے کیاکہیے
عام پیرایۂ بیان میں لوگ کہتے ہیں کہ مولانا علوم قدیمہ وجدیدہ کے مبصر عالم تھے۔سحر طراز انشاء پرداز،بلند پایہ ادیب، جادو فشاں خطیب تھے۔فہم و تدبر، ذہانت وفطانت اُن کے اوصاف وکمالات ِطبعی کاتکمۂ زریں تھے۔لیکن حقیقت یہ ہے کہ یہ سب عنوانات مولانا کی اصل شخصیت کی ترجمانی اورعکاسی سے قاصر ہیں وہ بذاتِ خودایک تاریخ تھے اورتاریخ ساز بھی، وہ مستقل ایک عہد تھے اور عہد آفریں بھی۔انھوں نے اپنے دماغ اورزبان وقلم سے ایک عہد پیدا کیاجس کی ہمہ گیری اوروسعت کایہ عالم تھا کہ اُ س سے مذہب بھی متاثر ہوااورادب بھی، سیاست بھی اُس سے اثرپذیرہوئی اورتہذیب وثقافت بھی۔اُن کاقلم ابرِ بہاراں بھی تھا اوربرقِ شررفشاں بھی۔علم وحکمت اورشعروادب کے میدان کی طرف نکل گیاتوفروغِ نظراورایمان ویقین کے لالہ وگل کوپیغام ِنشوونما دیتا گیا اورچٹیل میدانوں کوگل وگل زاربناگیا۔اوراگراُس نے مذہب اورسیاست کی طرف رخ کیاتوفکر ونظر اوراحساس وشعور کی دنیا میں طوفان برپا کرگیا،جوگوشہ نشین تھے وہ اس آواز کوسن گھروں سے نکل پڑے ،جن پر غلامی کی غفلت ومدہوشی کاتسلّط تھا وہ جوش وولولۂ عمل سے سرشار ہوکرزندگی کاایک نیا خون اپنی رگوں میں دوڑتاہوا محسوس کرنے لگے۔وہ ہر بزم اورہر محفل میں پہنچا اورہرجگہ صدر انجمن اورمیر محفل ہوکررہا۔مذہب،سیاست اور ادب،تہذیب اورمعاشرت ان میں کوئی منزل ایسی نہیں ہے جس کی طرف اُ س نے رخ نہ کیاہو اوراُس میں اپنے اجتہاد وتحقیق ،سنجیدہ فکراور نظر بلند کے لازوال نقوش نہ چھوڑ گیاہو۔
ایک شخص آج کل کے رسمی طریقۂ تعلیم...

جهود علماء بهاولفور في النهضة العلمیة الحدیثة

The state of Bah┐walp┴r was founded in 1802 by Naw┐b Mohammad Bah┐wal Khan II. After the establishment of Pakistan the state opted to accede to the new, on 14 August 1947 October 1947. It was dominion of Pakistan, with effect from 7.1511 merged into the province of West Pakistan on 14 October Bah┐walp┴r has always been a seat of higher learning. Uch Shar┘f, a nearby ancient town, had one of the largest universities where scholars from all over the world used to come for studies. As a continuation of that tradition, J┐m‘a Abb┐siya was established in Bah┐walp┴r in the year 1925, following the academic pursuits of Jamia Al-Azhar, Egypt. The renowned scholars spread Islam by teaching Tafs┘r of Qura’n, Hadith, Fiqh, and History along with other contemporary subjects. The establishment of Jamia Abb┐sia and the arrival of religious scholars in Bah┐walp┴r bear witness that it is a scholarly and traditional state and it has been proved as a place of protection for educational, cultural and historical traditions.

Adaptive Wavelet Thresholding for Non- Homogeneous Noise Reduction in Mr Magnetic Resonance Images

Noise suppression in MR (Magnetic Resonance) images is a critical task; conventional signal processing techniques are not always suitable as spatial resolution may lose during noise suppression process. Therefore noise suppression ought to be performed in a manner so as to preserve the actual pattern of the image. Non-homogeneous noise is one of the challenges faced in image processing. This thesis work; specifically focuses on non-homogeneous noise suppression method for MR images. Wavelet Analysis has widely been used for image processing including image de-noising, edge detection and segmentation. The existing wavelet de-noising methods are focused on homogeneous noise removal, using same threshold for entire image. If the image contains different burst of random noise, these conventional methods are not sufficient for effective noise removal. The quality of the post-processed image is further affected if these noise patterns cover hard to find malignant areas, which possibly increases the false alarm for diagnostic imaging. In order to improve the early detection of possible malignant areas, the quality of the post-processed image requires effective de-noising techniques, which can be adapted with the nature of noise burst. The fuzzy rule based wavelet thresholding method has been explored in this research for effective noise removal from an image with an array of complexities. In order to develop a robust system closer to real image with non-homogeneous noise, a complex range of noise patterns have been incorporated in MR images. The initial phase of the dissertation work involves the synthesis of non-homogeneous noise on various MR images. Real MR images without noise burst were used as a benchmark. The de- noised images are compared with their clean counterparts for measuring the effectiveness of the technique. A novel image synthesis process has been developed for analyzing the image de- noising and segmentation. Some of the images contain various sizes of malignant patterns for full scale analysis of image de-noising and fuzzy image segmentation. The main focus of the analysis is the brain image, as it requires rigorous image assessments for an effective classification and detection of patterns. The second phase of the dissertation work expounds the wavelet thresholding for various sets of images. An in-depth investigation of fuzzy rule based optimizer for adapting the wavelet threshold for effective noise suppression has been examined. In this technique, the threshold is further optimized, based on number of criterion including; the intensity, location and size of the noise burst over the malignant patterns. Therefore the present technique improves the post processing diagnostic of images containing small pattern(s) hidden under noise bursts, which otherwise goes undetected. The third phase of the dissertation work studies the impact of non-homogeneous noise on the performance of fuzzy image clustering algorithm. Various results were analyzed for clean, noisy and de-noised images. The purpose here is to segment the malignant areas of noisy brain MRI for effective tumor detection. Fuzzy rule based optimizer plays an important role for adapting the wavelet threshold for the region of interest. The fuzzy information of image contours and noise burst transformed into crisp control decision signals for adapting the threshold. In addition, it was found that the noisy image with no tumor has a false possibility of detecting benign pattern as malignant area. Other research outcome includes the detection of patterns in an image with invisible noise bursts using Multi-resolution Analysis. The result of this course of action is obtained in the diagonal detail components of multi-level decomposition. The difficulties observed in the prevailing methodology include the limited set of research studies conducted to address the issue of non-homogeneous noise in MR Images and the limited accessibility of real images. A good source of validation is the comparison of the de- noised image with that of clean image. Impact of non-homogeneous noise has been explored using directional wavelet. This analysis demonstrates how adversely, different noise patterns affect the computational performance of curvelets and ridglet. The main outcomes of this technique include the impact of non- homogeneous noise on wavelet and curvelet based de-noising methods. An important attribute of this research, is improved methodology for malignant patterns detection in noisy MR Images. This, in turn, makes possible the better development of image diagnostic tools.