Search or add a thesis

Advanced Search (Beta)
Home > Major Political and Religious Steps Taken by the Zia Regime

Major Political and Religious Steps Taken by the Zia Regime

Thesis Info

Author

M Waheed-uz-Zaman

Department

Pakistan Study Centre

Program

MA

Institute

University of Peshawar

Institute Type

Public

City

Peshawar

Country

Pakistan

Degree Starting Year

1988

Degree End Year

1990

Subject

Pak Studies

Language

English

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676710685524

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

گھگھی تے پیسے

گھگھی تے پیسے

اک واری دی گل اے کہ اک ٹاہلی اتے اک گھگھی نے آہلنا پایا ہویا سی۔ اوس نے انڈے دتے جنہاں وچوں دو بہت ای سوہنے بچے نکلے۔ گھگھی بہت خوش سی۔ اوہ بچیاں لئی کول دے کھیتاں وچوں دانے اکٹھے کر کے لیاندی۔ انج کئی دن ہو گئے۔ ہن اوہدے بچے کجھ سیانے ہو گئے سن۔

اک دن اوس نوں کسے تھاں توں پیسیاں والی پوٹلی لبھی۔ اوس ایہہ پیسے اپنے آہلنے وچ لیا کے رکھ دتے۔ اک دن پنڈ دا اک منڈا گھگھی دے بچے آہلنے وچوں کڈھن لئی درخت اتے چڑھیا۔ اوس نوں پیسیاں والی پوتلی نظر آئی۔ اوس پوٹلی چکی تے تھلے اتر آیا۔ جدوں گھگھی واپس آئی تاں اوہ پوٹلی اوس نوں نظر نہ آئی تاں اوہ آکھدی اے کہ ’’کوگوں کوں کوئی بھکھا مار دا میرے پیسے لے گیا۔‘‘ اوہ منڈا تھلے کھڑا گھگھی دی ساری گل بات سن رہیا ہوندا اے۔ اوہدی گل سن کے اوس نوں بہت غصہ آندا اے۔ اوس اک وتا چک کے گھگھی دے ماریا جو اوہدے سر وچ لگا تے اوہدا سر پاٹ گیا۔ اوہ آکھدی اے کہ ’’کوگوں کوں، اسیں لال پراندے پائے نیں‘‘ اوہدا زخم ٹھیک نئیں ہوندا۔ اوہدے وچ کیڑے پے جاندے نیں تے اخیر اوہ مر جاندی اے۔ فیر اوس نوں نہوا کے کفن پایا جادنا اے تے دفن کر دتا جادنا اے۔

A Comparative Research Between Conventional and Islamic Bank System of Pakistan: Liquidity Risk Management

The function of the bank is differentiated into budgetary middle people, facilitator and supporters. Hence, the banks keep themselves as confided body to their trade and business partners. Assets hazard could emerge and to be seen out of such diverse tasks since they are entirely on stake in terms of accessibility. When assets are set out by the non-members supplementary actions are necessary to be taken by the Islamic banks in order to balance assets and liquidity with sharia standards. The purpose of this exploration is to find the liquidity risk associated to the dissolvability of finance based foundation in order to evaluate assets risk management via parallel evaluation between Islamic and other Pakistani banks. This paper inspects the significance of the magnitude of the bank, networking capital margin on equity, finical sufficiency plus return on Resources and Assets (RoA), along assets stake organization in conventional plus Islamic banks of the Pakistan. The investigation relays on auxiliary knowledge that is over the period of four years. For instance, during 2017-2018, the investigation explored positive, hence, less significant relationship of magnitude of the firm plus networking cash surge to net assets along with liquidity vulnerability in similar models. Moreover, financial competence share in other banks plus margin of assets in Islamic banks is found encouraging and prominent at ten percent 10% gradation equivalent.

Digital Watermarking Using Machine Learning Approaches

In recent years digital watermarking has gained substantial attraction by the research community. It promises the solution to many problems such as content piracy, illicit manipulation of medical/legal documents, content security and so on. Watermarked content is usually vulnerable to a series of attacks in real world scenario. These attacks may be legitimate, such as common signal processing operations, or illegitimate, such as a malicious attempt by an attacker to remove the watermark. A low strength watermark usually possesses high imperceptibility but weak robustness and vice versa. On the other hand, different set of attacks are associated with distinctive watermarking applications, which pose different requirements on a watermarking scheme. Therefore, intelligent approaches are needed to adaptively and judiciously structure the watermark in view of the current application. In addition, traditional watermarking techniques cause irreversible degradation of an image. Although the degradation is perceptually insignificant, it may not be admissible in applications like medical, legal, and military imagery. For applications such as these, it is desirable to extract the embedded information, as well as recover the sensitive host image. This leads us to the use of reversible watermarking. An efficient reversible watermarking scheme should be able to embed more information with less perceptual distortion, and equally, be able to restore the original cover content. Therefore, for reversible watermarking, capacity and imperceptibility are two important properties. However, if one increases the other decreases and vice versa. Hence, one needs to make an optimum choice between these two properties for reversible watermarking. 5The research in this work is two-fold. Firstly, we develop intelligent systems for making optimum robustness versus imperceptibility tradeoffs. The performance of the existing watermarking approaches is not up to the task when we consider watermark structuring in view of a sequence of attacks, which is much desirous in real world applications. In order to resist a series of attacks, we employ intelligent selection of both the frequency band as well as strength of alteration for watermark embedding using Genetic Programming. To further enhance the robustness of the watermarking system, Support Vector Machines and Artificial Neural Networks are applied to adaptively modify the decoding strategy in view of the anticipated sequence of attacks at the watermark extraction phase. Secondly, we devise an intelligent system capable of making optimum/ near optimum tradeoff between watermark payload and imperceptibility. In the context of reversible watermarking, we propose an intelligent scheme which selects suitable coefficients in different wavelet sub-bands and yields superior capacity versus imperceptibility tradeoff. Experimental results show that machine learning approaches are very promising in state of the art watermarking applications.