Search or add a thesis

Advanced Search (Beta)
Home > مرزامحمد سعید دہلوی حیات اور فن

مرزامحمد سعید دہلوی حیات اور فن

Thesis Info

Author

ثاقف نفیس

Department

Department of Urdu

Program

PhD

Institute

Government College University

Institute Type

Public

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2007

Subject

Urdu

Language

Urdu

Other

CD is also available at PG Library

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676711104575

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

اک بے نام سی کیفیت

اک بے نام سی کیفیت

دن بھی دیکھا ، رات بھی دیکھی
لہجے دیکھے ، بات بھی دیکھی
شام کو ہم نے یاد بھی دیکھی
جیت بھی دیکھی ، مات بھی دیکھی
دن کو ہم نے تارے دیکھے
لہجے تیرے سارے دیکھے

ہجر بھی دیکھا ، وصل بھی دیکھا
چاند بھی دیکھا ، بادل دیکھے

کیسے کیسے وہم تھے دل میں
ہنستے ہنستے رونے لگتے
روتے روتے ہنسنے لگتے
ایسے تُو نے پاگل دیکھے

عمر گزاری ہے تجھ بن میں
آج بھی زندہ ہوں تجھ بن میں
لیکن اپنا حال تو دیکھو
دن سویا سویا رہتا ہے
شب جاگی جاگی رہتی ہے

زبانوں کی تہذیبی اہمیت عربی زبان و قرآن حکیم: اہمیت و کردار

Languages are considered God-gifted and human being is far superior in linguistic skills as compared to other creatures. Language is associated with the civilization and demise of a language leads to death of that civilization. The words and phrases of a language are the outcome of specific epistemological environment of a civilization and cannot be used in the same mining in any other language.

A Natural Language Based Retrieval System for Data Warehouse Using Multi-Dimensional Entity Relationship Model

Natural Language Interfaces to Databases (NLIDB) is an area of research that deals with the representation of users request to database in their native language. Currently, data warehouses are widely used by enterprises for decision making. It is important to mention that characteristics of decision-making systems are inherently different from transactional systems. The users of decision-making systems are top management (executives) who are normally non-technical having less knowledge of the data warehouse schema and about writing database technical queries. In fact, ad-hoc query is the information need of user that may not be fulfilled with front-end tools having predefined capabilities e.g. Reporting, OLAP or Data mining tools etc. Such information needs are not easy to express in technical query language. This motivated us to propose a Natural Language Based Retrieval System for Data Warehouse (NLRSDW) to support users especially in the ad-hoc query development.A Logical Schema-based Mapping (LSM) technique has been developed. Using this technique, targeted search is performed efficiently in the data instances. For targeted search, a LSM oriented mechanism has been presented. In addition, 3 searching strategies are elaborated which include 1) Identified elements searching 2) Proximal elements searching and 3) Level-wise searching to retrieve the matching instances for each data value. The retrieved instances are ranked with 5 criterions based on which an algorithm has been developed. Furthermore, solution to identify the aggregation constructs (i.e. aggregation function, measure, level and grouping attributes) accurately has been presented. Data Warehouses maintain aggregated computations to efficiently answer queries on large volume of data. It is very challenging task to interpret accurate aggregation constructs from the keyword-based query written on the Natural Language Interface to Data Warehouse. Later, a semi-automatic approach to build the Data Warehouse logical Schema-based Domain Thesaurus is proposed.This approach takes the Data Warehouse logical Schema as input and generates Domain Thesaurus using multiple sources containing Schema, Data Instances, WordNet, WWW and Domain Repository. The Thesaurus evolution approach is also presented which shows how Thesaurus can be technically expanded at user query time.An in-depth experimental evaluation has been carried out in comparison to existing systems. The results are encouraging. Using NLRSDW, non-technical users can easily write any ad-hoc information need in natural language. As a result, executives do not have to take support of IT staff and time to develop query is negligible.