سرراس مسعود
افسوس ہے کہ ۳۰؍ جولائی ۱۹۳۷ء کی دوپہر کو ڈاکٹر سرراس مسعود کا بھوپال میں بعارضہ تپ میعادی انتقال ہوگیا، باہر والوں کو ان کی بیماری کی کوئی خبر نہ تھی، یکایک پہلی اگست کے اخباروں سے ان کی وفات کی اطلاع ملی، مسلمانوں کے لئے عموماً ور ان کے دوستوں کے لئے خصوصاً یہ سانحہ ہی المناک ہے، وہ ہماری قوم میں تعلیمی مسائل کے بڑے ماہر سمجھے جاتے تھے، سرسید کے پوتے اور جسٹس سید محمود کے بیٹے تھے، تعلیم سے فارغ ہوکر وہ پہلے پٹنہ میں ہیڈماسٹر ہوئے، وہاں سے کٹک پروفیسر ہوکر گئے، پھر حیدرآباد میں ناظم تعلیمات اور اس کے بعد مسلم یونیورسٹی کے وائس چانسلر اور آخر میں ریاست بھوپال میں وزیر تعلیم ہوئے، ۱۸۸۹ء میں پیدا ہوئے تھے، ۴۸ برس کی عمر پائی، جاپان کا تعلیمی نظم و نسق اور انتخاب زریں (اردو اشعار کا انتخاب) وغیرہ بعض رسالہ اور مضامین ان کی علمی اور ادبی یادگار ہیں، مرحوم نے دو جوان لڑکے پہلی بیوی سے چھوڑے ہیں، بڑا لڑکا تعلیم سے فارغ ہوکر اب یورپ سے واپس آگیا ہے۔
مرحوم بڑے وجیہہ، کشیدہ قامت، سرخ و سفید، ہنس مکھ اور ملنسار تھے، جس مجلس میں ہوتے سب پرچھا جاتے، باتوں کے دھنی اور زبان کے میٹھے تھے، ہر شخص سے جھک کر ملتے تھے، ایک ذاتی واقعہ ہے، مگر بیان کے قابل ہے، بارہ تیرہ برس ہوئے جب وہ حیدرآباد میں ناظم تعلیمات تھے، تو میرا حیدرآباد جانا اور ایک دوست کے ہاں ٹھہرنے کا اتفاق ہوا، جن سے پہلے گو ان سے بہت میل ملاپ تھا، مگر یکایک بیچ میں ایسی شکرنجی ہوگئی تھی کہ ملنا جلنا اور بات چیت تک بند ہوگئی تھی، میں جب ان سے جاکر ملا تو انہوں نے پوچھا کہاں ٹھہرے ہو، میں نے جگہ بتائی تو وہ چپ سے...
Fraud is behavior that is contrary to the law carried out by individuals, both from within and outside the organization, with the intention of gaining personal or group benefit while harming other people. This research aims to determine the influence of professional skepticism, competence, independence and ethics on the auditor's ability to detect fraud. The variables of this research are professional skepticism, competence, independence and ethics as variable This research used census techniques, so the number of samples in this study was 56 people. Data analysis in this study used statistical analysis with Statistical Product and Service for Windows version 26.00 (SPSS version 26). The results of this research show that Professional Skepticism has a significant effect on the auditor's ability to detect fraud, Competence has a significant effect on the auditor's ability to detect fraud, Independence has a significant effect on the auditor's ability to detect fraud, Ethics has a significant effect on the auditor's ability to detect fraud.
Inequalities lie at the heart of a great deal of mathematics. G. H. Hardy reported Harald Bohr as saying ‘all analysts spend half their time hunting through the literature for inequalities which they want to use but cannot prove’. Inequalities involving means open many doors for analysts e.g generalization of mixed means fallouts the refinements to the important inequalities of Holder and Minkowski. The well known Jensen’s inequality asserts a remarkable relation among the mean and the mean of function values and any improvement or refinements of Jensen’s inequality is a source to enrichment of monotone property of mixed means. our aim is to utilize all known refinements of Jensen’s inequality to give the re- finements of inequality among the power means by newly defined mixed symmetric means. In this context, our results not only ensures the generalization of classical but also speak about the most recent notions (e.g n-exponential convexity) of this era. In first chapter we start with few basic notions about means and convex functions. Then the classical Jensen’s inequality and the historical results about refinements of Jensen’s inequality are given from the literature together with their applications to the mixed symmetric means. In second chapter we consider recent refinements of Jensen’s inequality to refine inequality between power means by mixed symmetric means with positive weights under more comprehensive settings of index set. A new refinement of the classical Jensen’s inequality is also established. The Popovicui type inequality is generalized using green function. Using these refinements we define various versions of linear functionals that are positive on convex functions. This step ultimately leads us to viiviii the important and recently revitalized area of exponential convexity. Mean value theorems are proved for these functionals. Some non-trivial examples of exponential convexity and some classes of Cauchy means are given. These examples are further used to show monotonicity in defining parameters of constructed Cauchy means. In third chapter we develop the refinements of discrete Jensen’s inequality for con- vex functions of several variables which causes the generalizations of Beck’s results. The consequences of Beck’s results are given in more general settings. We also gen- eralize the inequalities of H ̈older and Minkowski by using the Quasiarithmetic mean function. In forth chapter we investigate the class of self-adjoint operators defined on a Hilbert space, whose spectra are contained in an interval. We extend several re- finements of the discrete Jensen’s inequality for convex functions to operator convex functions. The mixed symmetric operator means are defined for a subclass of positive self-adjoint operators to give the refinements of inequality between power means of strictly positive operators. In last chapter, some new refinements are given for Jensen’s type inequalities in- volving the determinants of positive definite matrices. Bellman-Bergstrom-Fan func- tionals are considered. These functionals are not only concave, but superlinear which is a stronger condition. The results take advantage of this property.