Search or add a thesis

Advanced Search (Beta)
Home > Comparison of Muscle Strength With and Without Vastus Medialis Oblique Training in Post-Operational Total Knee Replacement Patients

Comparison of Muscle Strength With and Without Vastus Medialis Oblique Training in Post-Operational Total Knee Replacement Patients

Thesis Info

Author

Sajid Ali

Supervisor

Salman Bashir

Program

MS

Institute

Riphah International University

Institute Type

Private

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2016

Thesis Completion Status

Completed

Page

xii, 81 . : ill. ; 29 cm.

Subject

Medicine & Health

Language

English

Other

In partial fulfillment of requirements for the award degree of MS Orthopedic Manual Physical Therapy; Includes bibliographical references; Thesis (MS)--Riphah International University, Lahore; English; Call No: 612.741 SAJ

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676711464009

Asian Research Index Whatsapp Chanel
Asian Research Index Whatsapp Chanel

Join our Whatsapp Channel to get regular updates.

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

سیالکوٹ میں اردو شاعری کا ارتقا 1947 تا 2010

سیالکوٹ میں اردو شاعری کا ارتقاء(۱۹۴۷ ء تا۲۰۱۰)

سیالکوٹ ایک تاریخی اور ادبی خطہ  رہا ہے۔ اس کی تاریخ پانچ ہزار سال پر محیط ہے ۔یہ خطہ  جغرافیائی لحاظ سے اس مقام پر واقع ہے جہاں کئی آبی گذرگاہیں ہیں۔ کشمیر اور پنجاب کے دیگر تجارتی شہروں سے اس کا قریبی رابطہ ہے۔ سیالکوٹ تاریخی، ثقافتی، سماجی، تہذیبی، علمی اور ادبی لحاظ سے لاہور اور دوسرے ادبی، ثقافتی، تہذیبی، تاریخی اور علمی شہروں سے کسی طور پر بھی کم نہیں ۔ اس شہر کی ثقافت توانائی اور رنگا رنگی لیے ہوئے ہے۔ یہاں کے میلے ٹھیلے، روایتی تہوار اور دیگر ثقافتی سرگرمیاں اس  خطے  کو  ہمیشہ ممتاز کرتی رہی ہیں۔      
سیالکوٹ کو اقبال و فیض کے مولد ہونے کا لا زوال فخر حاصل ہے۔ یہ ایک صنعتی شہر ہے۔ اس کی آبادی تقریباً تیس لاکھ سے زیادہ نفوس پر مشتمل ہے سر زمین سیالکوٹ صدیوں کی انسانی تہذیب و تمدن اور ادب و ثقافت کا عظیم الشان گہوارہ ہے ۔ اس دھرتی کے تاریخی آثار  مدت سے مورخین و ماہرین آثار قدیمہ کی دلچسپی کا سامان بھی رہے ہیں ۔ یہاں کی تہذیب ٹیکسلا اور موہنجو ڈارو کی تہذیبوں کے ہم پلہ ہے۔
   سیالکوٹ کی مٹی بڑی زرخیز اور مردم خیز ہے ۔سرزمین سیالکوٹ نے علم و ادب اور فنون لطیفہ کے میدانوں میں گراں قدر خدمات سرانجام دی ہیں۔ اس خطے کے باشندوں  نے پاکستان کی صنعتی  و اقتصادی ترقی کے ساتھ ساتھ علم و فن کی خدمت بھی جاری رکھی ۔ ماضی میں ملا کمال کشمیری ، ملا عبدالحکیم سیالکوٹی، امین حزیں سیالکوٹی ، اثر صہبائی، مرزا ریاض  اور غلام الثقلین نقوی نے علمی وادبی حوالے سے سیالکوٹ کا نام روشن کیا۔ مولوی میر حسن ، مولوی ابراہیم میر، ڈاکٹر جمشید راٹھور اور یوسف سلیم چشتی نے علم کی پیاس بجھائی۔...

Karen Armstrong’s Works on the Life and Mission of the Last Prophet (S. A. W.): A Critique of Her Distortion of Historical Truths

Karen Armstrong is a well-known prolific writer on Christianity, Islam, and Prophet Muhammad. She appears in her writings very much objective. In her books on the Las Prophet (s. a. w.) “Muhammad: A Biography of The Prophet and “Muhammad: A Prophet for Our Times” she generally appears to be attempting, unlike many Orientalists, to creat soft image of the Last Prophet (s. a. w.) . Methodologically he works may be considered highly appreciable but from historical angle she seems to have distorted certain evidenc related to the Last Prophet (s. a. w.) . The basic reason for such lapse in her books is that she did not consult the original and basic authentic sources of Islamic history. This articl analyses where she faltered in her presentation of historica truths concerning the Last Prophet (s. a. w.) .

Feature Subset Selection Using Meta Heuristic Approaches

The expansion of the data is so rapid in the real world today that, now accumulating and processing it is a huge task. This growth is exponential and when Data Mining (DM) tools are applied to analyze this enormous data, it makes the algorithms time-consuming and expensive. One of the most important algorithm in DM for analyzing the data is the tool for classi cation. Classi cation is a function of DM for predicting the class of a sample by building a classi er or a prediction model on the basis of already collected samples with their class. The dataset used for classi cation is a supervised data with di erent features or attribute. During classi cation some features can be of great signi cance while some could be irrelevant and redundant. The learning and prediction time of classi cation algorithms is reduced using feature selection. This decrease in time is due to the time saved on the cost of features that are not selected through feature selection. Feature selection also provides understanding into the nature of the problem to be solved. So, there is a vital need of removing those irrelevant and redundant features before building a classi er. This research is based on solving the problem of feature subset selection (FSS) that chooses the features/attributes that are of signi cant value for the classi er to be built. These signi cant features would reduce the data that will eventually help to improve the accuracy and reliability of big data analytics. The reduction of data eventually would increase the accuracy and reliability of decision support systemsespeciallycriticalhealthrelateddecisionsupportsystems. Other areas include sentiment analysis, opinion mining, drug discovery, tumor detection, stroke detection and many other such applications. Therst phase of this research has the novelty of considering FSS prob lem as multi-objective problem and solving it using two metaheuris tic techniques that are Non-dominating Sorting Genetic Algorithm II (NSGA-II) and Multi-objective Particle Swarm Optimization altered to solve FSS as a binary problem (BMOPSO). The experimentation results represent the importance of considering FSS as multi-objective problem as it outperforms against current techniques of FSS not only in terms of the accuracy of a classi er but number features reduced. The sec ond phase of this research explores Ant Colony Optimization (ACO) technique for FSS which is another meta-heuristic technique. To fur ther re ne the search, the signi cance of each feature is measured using minimum Redundancy Maximum Relevance (mRMR) technique before applying ACO. The results show that proposed technique performs bet ter when compared with other existing biological inspired algorithms for FSS. Both of the phases of this research use di erent real world datasets taken from UCI machine repository and k-fold cross validation is used to further authenticate the results of the proposed techniques. The fea ture subset selection primarily deals with the data representation for the classi cation process and reduces the computational complexity and prediction accuracy.