لگدی اے انج تاں پیاری حیاتی
کیڈی اے دکھاں دی ماری حیاتی
جدوں موت دا سانوں آندا اے سدّا
اگوں دی کردی تیاری حیاتی
دکھاں تے بھکھاں دے اندر جو گزرے
کھلے توں ایہو جئی ماری حیاتی
بڑا مان اوس نوں ہے دنیا دے اتے
پر موت اگے ہے ہاری، حیاتی
خوباں دی مستی جے تھوڑی جئی ہووے
مٹھی تاں نہیں پر کراری حیاتی
روندی پئی اے جو اولادِ آدم
روندا رہیا سی اوہ ساری حیاتی
کی رب اگے جا کے عمل سوہنے دیسیں
ستاں جو رہیا ایں ساری حیاتی
Background of the study: Urinary incontinence is a physically challenging and socially incapacitating situation with a loss of self-confidence. This study aims to narrate the latest literature on the efficacy of novel exercise-based techniques to treat stress urinary incontinence except the traditional exercise using Kegel’s method.
Methodology: The electronic searching was done using Google Scholar, Cochrane Library, PubMed, Science Direct, and BMC journals for the latest available at least three articles, including novel exercise regimes to treat stress urinary incontinence. The included techniques are Pilates, Paula Method, and the abdominal Hypopressive exercise technique. All the articles were analyzed, and their results are compiled in tabulated form in this narrative review.
Results: All the approaches like Pilates, Paula, and Hypopressive abdominal exercises are effective for the treatment of stress urinary incontinence. None of the regimes was found to be completely ineffective; however, the range of usefulness may vary.
Conclusion: This study asserts the ideology of inclusion of new therapies into clinical practice keeping in mind their latest literature-based evidence.
Geometric Function Theory is a branch of complex analysis which deals with the geometric properties of image domain of an analytic function and this research is rationalized with the advanced trends in this area. The main focus of this study is to define new subclasses of analytic functions using conic domains and Janowski functions. The technique of convolution and differential subordination is used to solve most of our results. We will use the concept of dual sets and quantum differential operator to study properties of these new subclasses. Some analytic and convolution properties such as inclusion results, radius problems and invariance under certain integral operators are studied. Several of the results are shown to be best possible. The connection of the results proved is established with already known ones.