بے سبب تو نہیں شجر رویا
زرد پتوں کو دیکھ کر رویا
رات پھر یاد مجھ کو ماں آئی
رات مَیں پھر ہوں رات بھر رویا
جیسے روئی تو ساتھ ساتھ مرے
ایسے کوئی نہ چشمِ تر رویا
زخم شاید تھا اس قدر کاری
دیکھ کر جس کو چارہ گر رویا
جب گھڑی آئی اُس کے جانے کی
میرے شانے پر رکھ کے سر رویا
دشت رویا جنون پر میرے
آبلے دیکھ کر سفر رویا
تیری حالت یہ کیا ہوئی تائبؔ
جس نے دیکھا وہ سر بہ سر رویا
Establishment of khilafah and tamkeen fil ‘ard means supremacy of the dictates of shari‘ah and socio-political justice on earth. This is one of the basic objectives and prominent messages of the Holy Quran and Seerah of Prophet Muhammad (s.a.w). About khilafah and tamkeen fil ‘ard the Holy Quran expresses as: -وَعَدَ اللَّهُ الَّذِينَ آمَنُوا مِنكُمْ وَعَمِلُوا الصَّالِحَاتِ لَيَسْتَخْلِفَنَّهُم فِي الأَرْضِ … -الَّذِينَ إِن مَّكَّنَّاهُمْ فِي الأَرْضِ أَقَامُوا الصَّلاَةَ وَآتَوُا الزَّكَاةَ وَأَمَرُوا بِالمَعْرُوفِ وَنَهَوْا عَنِ المُنكَرِ وَلِلَّهِ عَاقِبَةُ الأُمُورِ. -هُوَ الَّذِي أَرْسَلَ رَسُولَهُ بِالْهُدَى وَدِينِ الْحَقِّ لِيُظْهِرَهُ عَلَى الدِّينِ كُلِّهِ وَكَفَى بِاللَّهِ شَهِيداً. Prophet Muhammad (s.a.w) proclaims: - وَاَللَّهِ لَوْ وَضَعُوا الشَّمْسَ فِي يَمِينِي وَالْقَمَرَ فِي يَسَارِي عَلَى أَنْ أَتْرُكَ هَذَا الْأَمْرَ حَتَّى يُظْهِرَهُ اللَّهُ أَوْ أَهْلِكَ فِيهِ مَا تَرَكْتُهُ. The Holy Quran and the Seerah refer to some underlying milestones on the way of religious nations to status of khalafah and tamkeen fin ‘ard. These milestones may be expressed in an order as: da‘wah [preaching], deen [practices of prophetic teachings], hijrah [migration], ma‘iyyat-ul-Allah [companionship of Allah], qital [wars], nusrat-ul-Allah [divine aid], izhar-ud-deen [domination of deen] and khilafah [inheritance of authority]. This is noteworthy that journey of khalafah and tamkeen fin ‘ard begins with da‘wah [preaching towards deen] and passing through various milestones ends up again at da‘wah, as obvious from ayat-ul-istakhlaf quoted above. Therefore, the seekers of khilafah and tamkeen fil ‘ard should strive hard and keep struggling with the work of da‘wah with dedication in all circumstances and all means as per time and place requirements in lined with the modus operandi of Prophets, particularly Prophet Muhammad (s.a.w), instead of awaiting the status of khilafah and tamkeen fil ‘ard as prerequisite to start with the work of da‘wah and establishment of deen. This paper primarily aims to elaborate the milestones of Muslim Ummah to reach to the status of khilafah and tamkeen fil ‘ard. It also cast light on the objectives of khilafah and tamkeen fil ‘ard. This work provides useful guidance to Muslim Ummah in general and Ahlud da‘wah in particular about milestones and objectives of khilafah and tamkeen fil ‘ard.
Computations of Compressible Two-Phase Flow Models Two-phase flow is generally understood as being a simultaneous flow of two different im- miscible phases separated by an infinitesimal thin interface. Phases are identified as ho- mogeneous parts of the fluid for which unique local state and transport properties can be defined. In most cases, phases are simply referred to as the state of matter, e.g. gas/vapor, liquid, or solid. Typical examples are the flow of liquid carrying vapor or gas bubbles, or the flow of gas carrying liquid droplets or solid particles. However, more complex flow pro- cesses may exist where the phase distribution is less well defined. This work is concerned with the numerical approximation of homogenized two-phase flow models. The models are obtained by averaging the balance laws for single phases and are non-strictly hyperbolic and non-conservative, i.e. they are not expressible in divergence form. The seven-equation two-phase models are regarded as well-established and can be applied to study various two- phase flow phenomena. However, physical and numerical difficulties are associated with these models. In most situations, the general physics of the models is not needed, thus, more compact models may be enough. For that reason, the reduced five- and six-equation models, deduced from the seven-equation models, are investigated in this dissertation. The five-equation model is obtained under the asymptotic limit of stiff velocity and pressure re- laxations, while the six-equation model assumes stiff velocity relaxation only. Our primary objective is to develop a deeper understanding of these models containing non-conservative derivatives and to numerically approximate them. The high order kinetic flux-vector split- ting (KFVS) scheme, the space-time conservation element and solution element (CESE) method, the high resolution central schemes, and the HLLC-type Riemann solvers are ap- plied to solve these models. Several test problems are carried out for all considered models and the numerical results of suggested schemes are compared with each other and with those available in the literature.