اتفاق وچ برکت
اک دفعہ دی گل اے کہ اک پنڈ وچ اک بہت غریب آدمی رہندا سی۔ اوس دے تن پتر سن۔ اوہدے پتر بہت فرمانبردار سن۔ اوہناں دا پیو اوہناں نوں جو کجھ آکھدا اوہ کردے سن۔ اک دن اوہناں کول کھاون نوں کجھ وی نئیں سی۔ اوہناں دے والد نے آکھیا۔ چلو جنگل چلدے آں۔ کجھ جنگلی پھل اکٹھے کر دے آں تے کجھ شکار، اوہناں دے والد نے اپنے وڈے منڈے نوں آکھیا کہ توں جنگل وچ جا کے لکڑیاں اکٹھیاں کر کے لیا۔ دوجے منڈے نوں آکھیا کہ توں اگ لے کے آ۔ جد کہ تیجے منڈے نوں پانی لین لئی گھل دتا۔ اوہ تینوں چلے گئے تے آپ اک درخت تھلے آ بیٹھا۔
اوس درخت اتے ہنساں دا اک جوڑا رہندا سی جو ایہہ سارا کجھ ویکھ رہیا سی۔ ہنس اوہدے کولوں پچھداد اے کہ توں ایہناں چیزاں دا کیہ کرنا ایں۔ تیرے کول پکاون لئی کوئی چیز نہیں۔ ایہہ گل سن کے اوہ جواب دیندا اے کہ اج تہانوں پکانا ایں۔ ہنس آکھدا اے کہ ساہنوں نہ پکا۔ تینوں اک خزانے بارے دسدے آں۔ ایہہ گل سن کے اوہ خوش ہو جاندا اے۔ ہنس آکھدا اے کہ ایس درخت دے تھلے اک بہت وڈا خزانہ دفن اے۔ تسی اوہ کڈھ کے اپنی ضرورت پوری کر لو۔ اوہ بندہ اپنے تنے پتراں نال خزانہ کڈھ دا اے تے بہت سارے پیسے، ہیرے، چاندی تے سونا لے کے گھر آندا اے۔
گھر آ کے اوہ اپنے منڈے نوں آکھدا اے کہ گوانڈھیاں کولوں تکڑی منگ کے لیا تاں جے خزانے نوں تولیا جا سکے۔ گوانڈھی بڑے حیران ہوندے نیں۔ اوہ ویکھنا چاہندے نیں کہ تکڑی وچ کیہ تولیا جا رہیا اے؟ اوہ تکڑی دے تھلے گوند لاہ دیندے نیں۔ خزانہ تولدے ہوئے کجھ...
This research aims to determine the prediction and level of accuracy of bankruptcy predictions between the Altman, Zmijewski, Grover, Springate, Fulmer, and Foster models. The sample used in this research is a transportation sector service company listed on the Indonesia Stock Exchange. The sample was selected using a purposive sampling technique and obtained a sample size of 21 companies from a population of 47 companies. In this research, the data analysis technique used is descriptive analysis. Based on the results of data analysis, there are differences in results between the Altman, Zmijewski, Grover, Springate, Fulmer, and Foster models in predicting bankruptcy. The accuracy levels obtained from the highest to the lowest respectively were the Grover model (76%), Zmijewski model (71%), Springate model (67%). Fulmer model (57%), Altman model (43%), and Foster model (38%). The Grover model is a bankruptcy prediction model that has the highest accuracy rate of 76%.
Wireless sensor networks (WSNs), comprising of large numbers of tiny sensor nodes, find their applications in all aspects of human life. Some of these applications are surveillance and monitoring system, structural health monitor- ing, forest fire monitoring, habitat monitoring, border monitoring, combat zone monitoring, crop monitoring, medical care, security system, nuclear protection and measurement systems, biological applications, health applications, chemical attack recognition and the fields where wires could not be used. Sensor nodes used in WSNs are resource-constrained in terms of their radio range and battery power. In most of the applications it is very difficult to recharge their batteries. Therefore, they need careful energy management. Such energy management is also affected by the way the data from source to sink is routed. Performance metrics of routing protocols in wireless sensor networks are also different from those used in traditional networks. In contrast to traditional networks, energy is the major point of focus in the development of routing protocol in wireless sensor network. Optimized consumption of energy is thought to ensure a long lifetime for a wireless sensor network. In this dissertation, the main focus of our work is to explore all possible energy efficient approaches for the problem of data routing through energy-constrained sensor nodes in wireless sensor networks. In the first part of the dissertation, a gradient of cost fields is exploited to explore the energy-efficient routes for the delivery of data from any source node to the sink. The proposed, GRAdient Cost Establishment (GRACE), routing strategy is based on two cost factors: energy and link quality. A routing path is selected if it contains both high-power nodes and good-quality wireless links. In other words, GRACE operates on the optimized se- lection of paths that have lowest costs in terms of energy and link quality. In this way, GRACE reduces both energy consumption and communication-bandwidth requirements and prolongs the lifetime of the wireless sensor network. Using theo- retical analyses and computer simulations, it is shown that the proposed dynamic routing, GRACE, helps achieve the desired system performance under dynamically changing network conditions. A comparison of the proposed strategy, GRACE, with one of the best existing energy efficient routing algorithms GRAB has been presented which shows a better performance of GRACE over GRAB. Moreover, it is observed that operation initialization and status updation exert significant impact on the performance of a routing algorithm in a wireless sensor network. For this purpose, various modes of operation for updating status are explored and their impact is shown on the lifetime curves of GRACE strategy. Although GRACE is an energy-aware routing protocol designed specially for re- source constrained wireless sensor nodes, however, limited battery resource at a sensor node coupled with the hostile multi-path fading propagation environment makes the task of the network to provide reliable data services with an enhanced vilifetime challenging. The focus of the second part of the dissertation is, thus, to propose an energy-aware routing protocol embedded with transmission power con- trol (TPC) mechanism. In the second part, the main operation of the proposed strategy, Adaptive Power Control-based Energy Efficient Routing (APCEER), is two fold. On one hand, it tries to establish gradient-based energy-efficient routes from source to sink and on the other hand, it forces every node on the route to exploit the minimum possible power level to transmit data to its next-hop neigh- bor, while maintaining a reliable wireless link. This two-fold operation not only saves the energy of each and every sensor node in the network but it also reduces the network-wide communication interference significantly. This energy-saving re- sults in an overall increase in network lifetime and transmission throughput of the network. Computer simulations and test bed measurements are presented that show that APCEER outperforms the existing energy-aware routing strategies, not equipped with a power control mechanism. It can thus be used in urban appli- cations of wireless sensor networks where ultra-efficient utilization of energy, by power-constrained nodes operating in severe fading conditions, is needed.