شہرِ سخن کو ایسا خزانہ نہیں ملا
صلِّ علیٰ سے بڑھ کے ترانہ نہیں ملا
میرے رسولؐ! تو کہ شہہِ ہست وبود ہے
کوئی بھی تیرا لمحہ شہانہ نہیں ملا
اُٹھا جو تیرے در سے بصد نخوت و غرور
اُس شخص کو کہیں بھی ٹھکانہ نہیں ملا
اک ذرہ تیرے نقشِ کفِ پا کا پا گئی
دستِ ہوا کو ایسا خزانہ نہیں ملا
چُن لیتے تیری راہ کے کانٹے پلک پلک
افسوس! ہم کو تیرا زمانہ نہیں ملا
کیسے کروں میں آیۂ تطہیر کا بیاں
دھرتی کو پھر سے ویسا گھرانا نہیں ملا
هدفت الدراسة لمعرفة العوامل التقنية على فاعلية وكذل كفاءة البيانات المحاسبية في البنوك الكويتي وكيف تؤثر العوامل القانونية وكذلك الضوابط المهنية على فاعلية وكفاءة البيانات المحاسبية في البنوك الكويتية وكيف تؤثر العوامل الإدارية على فاعلية وكفاءة البيانات المحاسبية المحوسبة في البنوك الكويتية وكيف تؤثر العوامل الثقافية والاجتماعية على فاعلية وكفاءة البيانات المحاسبية في البنوك الكويتية وكيف تؤثر العوامل الاقتصادية على فاعلية وكفاءة البيانات المحاسبية في البنوك الكويتية، تكون مجتمع الدراسة من العاملين في الدوائر أو الأقسام التي تركز في أدائها لعملها على أنظمة البيانات المحاسبية في البنوك في الكويت وعددهم 120، اعتمدت الدراسة على المنهج الوصفي التحليلي، وأسفرت النتائج بأن البيانات المحاسبية المحوسبة ذات فاعلية عالية مما يعني أن المصارف التجارية في الكويت تعمل على زيادة الاهتمام بنظم المعلومات من منطلق دورها الأساسي في زيادة فاعلية وكفاءة تلك النظم، وأوصت الدراسة بالعمل على توسيع دائرة الاستفادة من البيانات المحاسبية المصرفية لتشمل كافة الإدارات والأقسام والأنظمة الفرعية والربط بين فروع المصارف وتمكين عملائها من تحقيق أقصى درجات الاستفادة منها
Fossil fuels are a major contributor to the today’s world energy demand as well as greenhouse gases causing global warming. The idea to reduce the dependence on fossil fuels for a green future needs a stepwise transition from fossil fuels to renewable sources. Among the various renewable sources hydrogen is probably the most promising alternative due to its availability, high heating value per unit weight, and zero emissions. The only challenge associated with hydrogen is its safe and feasible storage. The methylcyclohexane-toluene-hydrogen (MTH) system is the one that is considered safe and economical option for hydrogen production, storage and transportation, and utilization. The dehydrogenation reaction of the MTH system is highly endothermic and requires considerable amount of heat energy at a fast rate to have high equilibrium conversions. The successful utilization of hydrogen economy based on the MTH system therefore requires a highly active, selective, and stable dehydrogenation catalyst with its associated reaction kinetics. An intensified dehydrogenation reactor design that supplies high rates of heat transfer to the catalyst bed is also desired. A comprehensive review of the literature regarding kinetics of the methylcyclohexane (MCH) dehydrogenation over Pt containing catalysts has revealed that there is no consensus among the researchers on describing the reaction mechanism, rate-determining step, and inhibition offered by a product. Different researchers have suggested different reaction chemistry and developed different kinetic rate equation. There is hardly a study on the design and simulation of an intensified dehydrogenation reactor that is capable of being used on commercial scale applications. In the present study, an attempt is made to address the discrepancies in the kinetics of the MCH dehydrogenation that exist in the literature. The experimental data of 5 different Pt containing catalysts over a wide range of operating conditions is used to conduct a detailed kinetic study of the dehydrogenation reaction. Various kinetic models are developed based on the power law, Langmuir-Hinshelwood-Hougen-Watson (LHHW), and Horiuti-Polanyi reaction mechanism. The developed kinetic model equations are analyzed both kinetically and statistically and the best fitted kinetic model for each of the catalysts is worked out. The kinetic model based on single-site LHHW kinetics where loss of first hydrogen is the rate limiting step is found appropriate in representing the data of all the catalysts. This leads to report a unified kinetic model for the methylcyclohexane dehydrogenation reaction over any Pt containing catalyst. In addition to that, a new reaction mechanism called associative adsorption of methylcyclohexane is proposed and a kinetic model equation developed based on this mechanism is found successful in representing the relevant experimental data. A 2.0 MW power plant, working on the methylcyclohexane dehydrogenation reaction to yield hydrogen gas as fuel for the power production, is proposed and simulated in Aspen Hysys. The operating conditions such as stream flowrates, temperatures, pressures, and thermal efficiency are worked out. It is found that 17.4148 kmol/h methylcyclohexane are required to produce 2.0 MW net power output. Also, it is found that there is enough energy in the exhaust gases of the turbine that can carry out the dehydrogenation reaction. Using the best-fit kinetic model and the simulation data obtained for 2.0 MW power plant, a novel reactor-heat exchanger design is mathematically modeled and simulated. The proposed reactor configuration is found highly appropriate in carrying out the dehydrogenation reaction.