مناجات
سوہنے اپنے نام دا واسطہ ای کر رحم کہ وقت وہاوندا اے
تیری تانگ اندر نزع وقت بنیا سَاہ آئوندا تے نالے جاوندا اے
عمر گذر گئی ایسے حال اندر تیرا دکھیا پیا کرلاوندا اے
واہ بے پرواہ دلدار میرا خبر پچھنے وی نہ آئوندا اے
خوشی وچ جہان پیا وسدا اے ‘ کوئی ہسدا تے کوئی گائوندا اے
ساہنوں سوہنیا وے تیرے ہجر اندر کوئی جگ دا چین نہ بھائوندا ے
نت دل نوں دیاں دلیریاں میں ‘ شاید یار سوہنا اج آئوندا اے
دل آکھدا کملیا بھل تیری ایویں نت دا وقت وہائوندا اے
Penelitian ini didasari oleh suatu kondisi yaitu belum maksimalnya penyerapan anggaran pada Dinas Perumahan Rakyat dan Kawasan Permukiman Kabupaten Nias Utara. Oleh karena itu masalah ini harus segera diatasi, salah satunya melalui penelitian untuk menemukan faktor-faktor yang mempengaruhi penyerapan anggaran ini bisa maksimal. Penelitian ini merupakan penelitian kualitatif untuk meneliti faktor-faktor yang mempengaruhi penyerapan anggaran pada Dinas Perumahan Rakyat dan Kawasan Permukiman Kabupaten Nias Utara. Fokus penelitian ini adalah menjelaskan faktor-faktor yang mempengaruhi penyerapan anggaran yaitu faktor perencanaan, faktor administrasi, faktor sumber daya manusia, faktor pengadaan barang/jasa, faktor regulasi dan faktor komitmen organisasi. Sampel seluruh pegawai pada Dinas Perumahan Rakyat dan Kawasan Permukiman Kabupaten Nias Utara dengan jumlah sampel sebanyak 17 orang. Metode penelitian yang digunakan yaitu riset deskriptif kualitatif yaitu riset didasarkan pada data kualitatif dalam pernyataan-pernyataan. Hasil penelitian merekomendasikan untuk lebih cepat dalam pengesahan anggaran oleh DPRD dan Pemerintah Daerah sehingga memiliki waktu untuk penyerapannya, melibatkan masing-masing SKPD dalam merencanakan anggaran sehingga tidak terdapat kegiatan penting yang terlewatkan dan perlu perhatian dari segi sarana dan prasana yang kurang memadai karena akan mempengaruhi kinerja pegawai.
A smart city is an efficient, reliable, and sustainable urban center that facilitates its inhabitants with a high quality of life standards via optimal management of its resources. Energy management of smart homes (SHs) is one of the most challenging and demanding issues which needs significant effort and attention. Demand side management in smart grids authorizes consumers to make informed decisions regarding their energy consumption pattern and helps the utility in reducing the peak load demand during an energy stress time. In demand side management, scheduling of appliances based on consumer-defined priorities is an important task performed by a home energy management controller. However, user discomfort is caused by the scheduling of home appliances based on the demand response or limiting its time of use. Further, rebound peaks that are regenerated in the off-peak hours are also a major challenge in demand side management. An increase in the world’s population results in high energy demand; thus, causing a huge consumption of fossil fuels. This ultimately results in severe environmental problems for mankind and nature. Renewable energy sources (RESs) emerge as an alternative to fossil fuels. The RESs are eco-friendly and sustainable, which are incorporated in SHs via two modes: grid-connected or stand-alone. The reliability of RESs is usually met with the use of hybrid RESs along with the integration of energy storage systems(ESS).The efficient usage of these components in the hybrid RESs requires an optimum unit sizing that achieves the objectives of cost minimization and reliability in stand-alone mode. These are some of the main concerns of a decision-maker. This thesis focuses on employing meta-heuristic techniq ues for efficient utilization of energy and RESs in SH. At first,an evolutionary accretive comfort algorithm is developed based on four postulations which allow the time-varying priorities to be quantified in time and device based features. Based on the input data, considering the appliances’ power ratings, its time ofuse,andabsolutecomfortderivedfrompriorities,theevolutionaryaccretivecomfortalgorithm generates an optimal energy consumption pattern which gives maximum satisfaction atapredetermineduserbudget. Acostperunitcomfortindex, whichrelatestheconsumer’s expenditure to the achievable comfort is also demonstrated. To test the applicability of theproposed evolutionaryaccretive comfort algorithm, three budget scenariosof 1.5 $/day, 2.0 $/day,and2.5$/dayaretaken. Secondly,apriority-induceddemandsidemanagementstrategybasedontheloadshiftingtechniqueconsideringvariousenergycyclesofanapplianceis presented. Theday-aheadloadshiftingtechniqueismathematicallyformulatedandmapped with multiple knapsack problem to mitigate the rebound peaks. The proposed autonomous home energy management controller embeds three meta-heuristic optimization techniques: genetic algorithm, enhanced differential evolution, and binary particle swarm optimization along with the optimal stopping rule, which is used for solving the load shifting problem. Next, the RESs and ESS are integrated into a residential sector considering grid-connected mode. The proposed optimized home energy management system minimizes the electricity bill by scheduling the household appliances and ESS in response to the dynamic pricing of theelectricitymarket. Heretheappliancesareclassifiedintoshiftableandnon-shiftablecategories, and a hybrid genetic particle optimization scheme outperforms to other algorithms in terms of cost and a peak-to-average ratio. Besides, meta-heuristic schemes that do not depend on algorithmic-specific parameters are considered for integrating the RESs and ESS in a stand-alone system. Preliminary, the Jaya algorithmisusedforfindingthe optimalunit sizingofRESs, including photovoltaicpanels, windturbines,andfuelcellstoreducetheconsumer’stotalannualcost. Themethodologyis applied to real solar irradiation and wind speed data taken from Hawksbay, Pakistan. Next, animprovedJayaandthelearningphaseasdepictedinteachinglearning-basedoptimization isproposedforoptimalunitsizingofphotovoltaics,windturbines,andbatterysystemsusing real data obtained from another site, located in Rafsanjan, Iran. The system’s reliability is consideredusingthemaximumallowablelossofpowersupplyprobabilityconcept. Finally, a diesel generator is integrated into the RESs to assess its environmental and economic aspects. Thus, the thesis objectives achieved are to have a green, reliable, economical, and sustainable power supply in the SH.