ﷺ
وہ جس میں اُسوۂ کامل حلول ہوتا نہیں
’’قسم خدا کی محب رسولؐ ہوتا نہیں‘‘
حضورِ رب ازل ؛ مدعاے آدمؑ بھی
بغیر اسمِ محمدﷺ قبول ہوتا نہیں
بھٹکتا رہتا ہے وہ آندھیوں ، بگولوں میں
جو ذرّہ خاکِ مدینہ کی دُھول ہوتا نہیں
نبیؐ کے ذکرِ معطر میں جو بھی محو رہے
خزاں کے ہاتھوں وہ پامال پھول ہوتا نہیں
نبیؐ بھی ہم سے بشر ہیں تو پھر بتاؤ ہمیں
وحی کا ہم پہ بھلا کیوں نزول ہوتا نہیں
نظر میں جس کی رہے رحمتِ حبیبِ خداؐ
رہِ حیات میں ہرگز ملول ہوتا نہیں
خدا سے مانگو اگر صدقۂ رسولؐ خدا
قبولِ عرض میں عرفانؔ! طول ہوتا نہیں
This article deals with “Synonymy” in Arabic. Generally “Synonymy” is a radical source which keeps language more advanced and developed. The “Synonymy” has gained attention of early Arabic linguists’ and scholars while compiling the sacred language data, for instance two major linguists Abū al-Mālik ibn Qutaybah al-Asma’i and Ibn Khalawayh focused on synonymity of words, eventually they considered memorisation of synonym words as a mark of pride. On the other hand, some other linguists like Abu al-‘Abbās Aḥmed ibn Yaḥy al-Thalb and Abū ‘Alī al-Fārisī have denied the existence of synonymity in Arabic language altogethers. After all, the “Synonymity” of words is considered as a linguistic phenomenon in all languages generally and in Arabic language particularly. A renowned great scholar ‘Abdul Raḥmān al-Kilānī paid countless attention to this linguistic phenomenon and wrote the book the of one is which“مترادف القرآن مع الفروق اللغوية”: entitled comprehensive reference books in the field. He studied Quranic synonyms with their meanings systematically. The article addresses the concept of synonymity with a brief historiography as well as what ‘Abdul Raḥmān al-Kilānī's book brought us in this field.
The core objective of this research is to introduce new classes of analytic functions by using the concept of bounded boundary rotation and some of its generalization. This research heavily depends on the recent techniques of convolution (Hadamard product) and the differential subordination. The Ruscheweyh derivative and Carlson-Shaffer operator are utilized to define certain new classes of analytic functions. We also investigate these classes for certain linear operators such as Jung-Kim-Srivastava operator, generalized Bernardi integral operator, Frasin integral operator and some others. Some geometrical and analytical properties, which include distortion bounds, radius problems, inclusion relation, rate of growth problem and integral representation, are explored systematically. Relevant connections of the results presented here with those obtained in earlier works are pointed out. This research is updated with the advancement and changing trends in the field of Geometric Function Theory and emerging new open problems are added for investigation.