ڈاکٹر عبدالوہاب عزام مصری
دوسرا حادثہ دنیائے عرب کی نامور شخصیت ڈاکٹر عبدالوہاب عزام مصری کی وفات کا ہے، وہ عربی دنیا کے اکابررجال میں تھے، ان میں علم و سیاست دونوں کا جتماع تھا علوم و ادب کے فاضل، عربی، فارسی، ترکی، انگریزی، فرنچ وغیرہ متعدد زبانوں کے ماہر تھے، اردو سے بھی واقفیت رکھتے تھے، انہوں نے مصر اور لندن کی یونیورسٹیوں سے ڈاکٹریٹ کی ڈگری حاصل کی تھی، ابتدا میں مدرسہ قضاء شرعی کے استاد مقرر ہوئے تھے، پھر یونیورسٹی میں عربی، فارسی اور ترکی کے پروفیسر، پھر اسی یونیورسٹی میں شعبۂ السنہ مشرقیہ کے صدر مقرر ہوئے، اور آخر میں آرٹس کالج کے پرنسپل ہوگئے تھے، علم کیساتھ سیاست بھی ممتاز تھے، چنانچہ مختلف اوقات میں حکومت مصر کی جانب سے لندن سعودی عرب اور پاکستان کے سفیر مقرر ہوئے، تھوڑے دن ہوئے سعودی حکومت نے ریاض یونیورسٹی کے قیام و تاسیس کے سلسلہ میں ان کی خدمات حاصل کی تھیں، ابھی وہ اس کام کو انجام دے رہے تھے کہ پیام اجل آگیا، انہوں نے اپنے قلم و دماغ سے علم و فن اور دنیائے عرب کی بڑی قیمتی خدمات انجام دیں اور علمی مضامین کے علاوہ بہت سی محققانہ تصانیف اور تراجم یادگار چھوڑے، عربی دنیا میں ان کی موت سے جو جگہ خالی ہوئی ہے وہ مشکل سے بھر سکے گی، اﷲ تعالیٰ علم و ملت کے اس خادم کو اپنے دامن رحمت میں جگہ دے۔
(شاہ معین الدین ندوی، جولائی ۱۹۵۹ء)
The development of Islamic Jurisprudence tradition over time produces the Juris-prudential product with different approaches, methodologies, and interpretations. Nowadays, the difference of opinion in the Islamic Jurisprudence is marked by the reconstruction of the jurisprudential tradition because they are no longer relevant to address the issue of masculinity. In this study, the author discusses one of the recent literatures of Islamic Jurisprudence, Al Fiqh Al Islami wa Adilatuhu, written by Wahbah Al-Zuḥaylī (1932-2015 AD). In this article, he tried to reach a compromise between classical jurisprudence with a contemporary one; this is due to some modern views that classical account is no longer able to solve the recent problems. Therefore Al-Zuḥaylī tried to integrate classical interpretation to the contemporary style with a consistent method. To find some pictures of his jurisprudential approach, the author discusses the different aspects of his masterpiece in this paper. Keywords: , ,
The stabilization problem of nonholonomic systems, for many reasons, has been an active research topic for the last three decades. A key motivation for this research stems from the fact that nonholonomic systems pose considerable chal lenges to control system designers. Nonholonomic systems are not stabilizable by smooth time-invariant state-feedback control laws, and hence, the use of dis continuous controllers, time-varying controllers, and hybrid controllers is needed. Systems such as wheeled mobile robots, underwater vehicles, and underactuated satellites are common real-world applications of nonholonomic systems, and their stabilization is of significant interest from a control point of view. Nonholonomic systems are, therefore, a principal motivation to develop methodologies that allow the construction of feedback control laws for the stabilization of such systems. In this dissertation, the stabilization of nonholonomic systems is addressed using three different methods. The first part of this thesis deals with the stabilization of nonholonomic systems with drift and the proposed algorithm is applied to a rigid body and an extended nonholonomic double integrator system. In this technique, an adaptive backstepping based control algorithm is proposed for stabilization. This is achieved by transforming the original system into a new system which can be asymptotically stabilized. Once the new system is stabilized, the stability of the original system is established. Lyapunov theory is used to establish the stability of the closed-loop system. The effectiveness of the proposed control algorithm is tested, and the results are compared to existing methods. The second part of this dissertation proposes control algorithm for the stabilization of drift-free nonholonomic systems. First, the system is transformed, by using in put transformation, into a particular structure containing a nominal part and some unknown terms that are computed adaptively. The transformed system is then stabilized using adaptive integral sliding mode control. The stabilizing controller for the transformed system is constructed that consists of the nominal control plus a compensator control. The Lyapunov stability theory is used to derive the compensator control and the adaptive laws. The proposed control algorithm is applied to three different nonholonomic drift-free systems: the unicycle model, the front-wheel car model, and the mobile robot with trailer model. Numerical results show the effectiveness of the proposed control algorithm. In the last part of this dissertation, a new solution to stabilization problem of non holonomic systems that are transformable into chained form is investigated. The smooth super twisting sliding mode control technique is used to stabilize nonholo nomic systems. Firstly, the nonholonomic system is transformed into a chained form system that is further decomposed into two subsystems. Secondly, the second subsystem is stabilized to the origin using the smooth super twisting sliding mode control. Finally, the first subsystem is steered to zero using the signum function. The proposed method is applied to three nonholonomic systems, which are trans formable into chained form; the two-wheel car model, the model of front-wheel car, and the firetruck model. Numerical computer simulations show the effectiveness of the proposed method when applied to chained form nonholonomic systems. This research work is mainly focused on the design of feedback control laws for the stabilization of nonholonomic systems with different structures. For this purpose, the methodologies adopted are based upon adaptive backstepping, adaptive inte gral sliding mode control, and smooth super twisting sling mode control technique. The control laws are formulated using Lyapunov stability analysis. In all cases, the control laws design for the transformed models is derived first, which is then used to achieve the overall control design of the kinematic model of particular nonholonomic systems. Numerical simulation results confirm the effectiveness of these approaches.