یہ تصنیف 2009 ء میں اشاعت کے زیور سے آراستہ ہوئی اس میں پروفیسر عبد الحق کے علامہ اقبال سے متعلق مضامین شامل ہیں۔ اس کتاب میں پروفیسر عبد الحق کا مطالعہ نکھر کر سامنے آیا ہے۔ اس میں زیادہ شفافیت ، زیادہ اثر اور شدید احساس دکھائی دیتا ہے۔ اقبال کے فکر و فلسفہ پر مشتمل مضامین ہندوستان میں ایک گونا اضافہ ہے۔ اس لیے پروفیسر عبد الحق کی یہ کتاب ان کی عمر بھر کا سرمایہ ہے جس میں ان کی تمام عمر کے تجربے اور ریاضت کا نچوڑ دکھائی دیتا ہے۔ اس کتاب کا پہلا ایڈیشن 2006ء میں منظر عام پر آیا اور قلیل عرصہ میں اس کادوسرا ایڈیشن منظر عام پر آگیا جو اس بات کا غماض ہے کہ یہ کتاب بہت مقبول ہوئی۔ اس کتاب میں کل تیرہ مضامین ہیں اور ہر مضمون خود ہی مطالعہ کی دعوت دیتا ہے۔ مضامین کا تنوع پروفیسر عبد الحق کی پختہ فکری اور بے باکی کا منہ بولتا ثبوت ہے۔ آپ کی اس تصنیف پرتبصرہ کرتے ہوئے ڈاکٹر محمود حسن الٰہ آبادی کہتے ہیں:
”پروفیسر صاحب کی تحریر عالمانہ انداز بیان کا نمونہ ہے ۔ موصوف اردو زبان کے بعض معاصر نقادوں کی طرح غلط اصطلاحات وضع کرنے ، ان پر اصرار کرنےاور انہیں عروج کرنے کے شغل سے کوسوں دور ہیں (7)“ پروفیسر عبد الحق کے تنقیدی مضامین کو اردو کے نصاب میں جگہ دینے کی آواز بھی ہندوستان میں سنائی دی گئی ہے۔ اس کتاب کے چند مضامین اس کتاب کی اشاعت سے قبل پاکستان کے مجلہ میں بھی شائع ہوئے تھے جن میں ایک مضمون ”اقبال اور مقام شبیری “ہے جو پاکستان کے معتبر ادارے مقتدرہ اردو زبان ، موجودہ نام ادارہ فروغ اردو کے ماہانہ مجلّے اخبار اردو میں شائع ہوا (8) اس کتاب میں شامل دو مضامین نادر ہیں جو...
Zoroastrianism is an ancient Iranian religion founded by an Iranian Prophet and scholar Zoroaster. It is claimed by some foremost scholars that this is the most ancient religion of the world which influenced the other major religions of the world like, Judaism, Christianity and Islam. The main source to know the Zoroastrianism is Avesta, Denkart and Bundahishn (sacred books) from which we know the terminologies and traditions of this religion. Main two spirits are Ahura mazda (god of pleasure and goodness) and Ahriman (god of evil) and seven more main spirits which are called as angels are Amesha spentas which show the actual spirit and direction of this ancient religion. Some of the concepts and traditions are same which exists in Islam but with different names and features, like prayers and matters after death, heaven and hell. In this article, main focus is on tradition and terminologies of this ancient religion to know its actual spirit to get the basic information and main themes for initial reader of this religion from Islamic theological pers-pective. No doubt, Zoroastrianism is one the amended religions exist on earth yet because of the similarity of various rituals with Islam. However, Zoroastrianism is being considered reve-aled religion and Zoroaster as true prophet of Allah.
The internet was initially designed to present information to users in English. However, with the passage of time and the development of standard web technologies such as browsers, programming languages, libraries, frameworks, databases, front and back-ends, protocols, APIs, and data formats, the internet became a multilingual source of information. In the last few years, the natural language processing (NLP) research community has observed a rapid growth in online multilingual contents. Thus, the NLP community maims to explore monolingual and cross-lingual information retrieval (IR) tasks. Digital online content in Urdu is also currently increasing at a rapid pace. Urdu, the national language of Pakistan and the most widely spoken and understandable language of Indian sub-continent, is considered a low-resources language (Mukund, Srihari, & Peterson, 2010). Part of speech (POS) tagging and named entity recognition (NER) are considered the most basic NLP tasks. Investigation of these two tasks in Urdu is very hard. POS tagging, the assignment of syntactic categories for words in running text is significant to natural language processing as a preliminary task in applications such as speech processing, information extraction, and others. Named entity recognition (NER) corresponds to the identification and classification of all proper nouns in texts, and predefined categories, such as persons, locations, organizations, expressions of times, quantities and monetary values, etc. it is considered as a sub-task and/or sub-problem in information extraction (IE) and machine translation. NER is one of the hardest task in Urdu language processing. Previously majority Urdu NER systems are based on machine learning (ML) models. However, the ML model needs sufficiently large annotated corpora for better performance(Das, Ganguly, & Garain, 2017). Urdu is termed as a scared resource language in which sufficiently large annotated corpus for ML models’ evaluation is not available. Therefore, the adoption of semi-supervised approach which is largely dependent on usage of the huge amount of unlabeled data is a feasible solution. In this thesis, we propose a generic Urdu NLP framework for Urdu text analysis based on machine learning (ML) and deep learning approaches. Initially, we addressed POS challenges by developing a novel tagging approach using the linear-chain conditional random fields (CRF). We employed a strong, stable, balanced language-independent and language dependent feature set for Urdu POS task and used the method of context words window. Our approach was evaluated against a support vector machine (SVM) technique for Urdu POS - considered Abstract WAHAB KHAN Reg: No. 72-FBAS/PHDCS/S12 vi as the state of the art - on two benchmark datasets. The results show our CRF approach to improving upon the F-measure of prior attempts by 8.3 to 8.5%. Secondly, we adopted deep recurrent neural network (DRNN) learning algorithms with various model structures and word embedding as a feature for the task of Urdu named entity recognition and classification. These DRNN models include long short-term memory (LSTM) forward recurrent neural network (RNN), LSTM bi-directional RNN, backpropagation through time (BPTT) forward RNN and BPTT bi-directional RNN. We consider language-dependent features such as part of speech (POS) tags as well as language independent features such as N-grams. Our results show that the proposed DRNN-based approach outperforms existing work that employ CRF based approaches. Our work is the first to use DRNN architecture and word embedding as a feature for Urdu NER task and improves upon prior attempts by 9.5% in the case of maximum margin.