Search or add a thesis

Advanced Search (Beta)
Home > اوریا مقبول جان بحیثیت کالم نگار تحقیقی و تنقیدی جائزہ

اوریا مقبول جان بحیثیت کالم نگار تحقیقی و تنقیدی جائزہ

Thesis Info

Author

نادیہ رباب

Supervisor

Zeenat Afshan

Program

Mphil

Institute

Riphah International University

Institute Type

Private

Campus Location

Faisalabad Campus

City

Faisalabad

Province

Punjab

Country

Pakistan

Thesis Completing Year

2016

Thesis Completion Status

Completed

Page

ii, 104 . : ill. ; 30 cm.

Subject

Urdu Literature

Language

Urdu

Other

Submitted in fulfillment of the requirements for the degree of M. Phil of Urdu to the Faculty of Social Sciences and Humanities.; Includes bibliographical references; Thesis (M.Phil)--Riphah International University, 2016; Urdu; Call No: 891.431092 NAD

Added

2021-02-17 19:49:13

Modified

2023-02-19 12:33:56

ARI ID

1676712190586

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

مولانا محمد اکبر ندوی

مولانا محمد اکبر ندوی
(پروفیسر مسعود حسن)
یہ خبر انتہائی افسوس کے ساتھی سنی جائے گی کہ مولانا محمد اکبر ندوی سابق ریڈر شعبہ عربی و فارسی کلکتہ یونیورسٹی ۱۵؍ رمضان المبارک ۱۴۰۰؁ھ کو صبح کے وقت ۳۰:۹ بجے اس دار فانی سے عالم جاودانی کو سدھارے۔ اناﷲ وَانا اِلیہ رَاجعُون۔ ان کی وفات سے مغربی بنگال میں عربی زبان کے ایک ممتاز ادیب ایک مستند عالم دین اور استادوں کے استاد کی جگہ خالی ہوگئی۔ راقم الحروف کے لیے ذاتی طور پر یہ حادثہ ایک بہت بڑا سانحہ ہے کیونکہ ان کی موت کے بعد اس کے اساتذہ میں اب کوئی زندہ نہیں رہا۔ اس کے مدرسہ، اسکول کالج اور یونیورسٹی کے استاد سب کے سب اﷲ کو پیارے ہوگئے۔ اس کی علمی رہنمائی کے لئے ایک آخری شمع رہ گئی تھی، موت نے اسے بھی چھین لیا۔
مولانا محمد اکبر ندوی کا وطن مالوف ناگپور تھا۔ مگر عرصہ سے ترک وطن کرکے کلکتے میں مقیم تھے۔ ان کی اعلیٰ تعلیم دارالعلوم ندوۃ العلماء میں ہوئی تھی، وہ مولانا مسعود عالم ندوی مرحوم کے ہم جماعت تھے، طالب علمی کے زمانے میں ان کی عربی خطابت اور عربی انشاء ندوہ میں مشہور تھی۔ فرماتے تھے کہ طلبہ کے ایک جلسے میں ان کی ایک عربی تقریر علامہ سید سلیمان ندویؒ کو اس قدر پسند آئی کہ انھوں نے جیب خاص سے انعام مرحمت فرمایا۔ عربی انشاء پردازی میں مسعود عالم صاحب سے ٹکر ہوتی تھی، ندوہ سے فراغت پاکر کلکتہ آگئے، اور اسلامیہ کالج سے بی۔ اے کیا۔ پھر کلکتہ یونیورسٹی سے عربی اور فارسی دونوں میں ایم اے کی ڈگری لی، اور ڈاکٹر محمد زبیر صدیقی مرحوم کے ارشد تلامذہ میں شمار ہونے لگے۔
مشرقی بنگال کے ایک بڑے کالج میں ایک بڑی اونچی جگہ ملی اور بڑی خوشامدیں ہوئیں، مگر اپنے استاد...

Glucose Insulin Ratio in Hyper Insulinemic Women with Polycystic Ovarian Syndrome

Background: Women with polycystic ovarian syndrome (PCOS) have insulin resistance and hyperinsulinemia that may play a key role in the pathogenesis of PCOS. Objectives: To determine and compare glucose-insulin ratio in hyper-insulinemic women with the polycystic ovarian syndrome and healthy controls. Materials & Methods: A cross-sectional comparative study was conducted at Lahore General Hospital. A total of 80 women 24-35 years of age were recruited from Lahore General Hospital. 50 women had PCOS, and 30 were healthy controls. PCOS was diagnosed by using the Rotterdam criteria. Height, weight, and waist circumference were measured. Glucose and insulin were estimated by the glucose oxidase method and ELISA, respectively. HOMA-IR was calculated to determine insulin resistance (IR). HOMA- β was calculated to assess the β-cell function. Fasting glucose and insulin ratio were also calculated. Results: Mean age of the women with PCOS and healthy controls was 29.89±3.54 and 28.60±1.12 years, respectively (p>0.54). BMI and waist circumference of women with PCOS were higher compared to healthy controls (p>0.45). Fasting glucose, fasting insulin, HOMA- β, and IR were significantly higher in women with PCOS compared to healthy controls (p<0.001). Conclusion: In addition to HOMA IR, the glucose-insulin ratio may be considered to assess hyperinsulinemia in women with polycystic ovary syndrome.

Mean Estimation in Adaptive Cluster Sampling Using Auxiliary Information

In this dissertation, generalized simple and exponential type estimators have been developed using the information of single and two auxiliary variables for the estimation of rare and clustered population mean in adaptive cluster sampling designs. The proposed estimators are specifically developed for different situations of clustered populations in simple adaptive cluster sampling, stratified adaptive cluster sampling and systematic adaptive cluster sampling designs. In Chapter 1, the discussion has been made about the situations of rare and clustered population in which the conventional sampling designs may not be appropriate in order to achieve even moderate precision. The use of adaptive cluster sampling design along with the process in the presence of auxiliary information is also discussed. Comparison of adaptive cluster sampling with conventional sampling design and some advantages and disadvantages has also been given. Furthermore, stratified adaptive cluster sampling and systematic adaptive cluster sampling has been illustrated in the same Chapter with the detail sampling process. In Chapter 2, the literature regarding the use of auxiliary information in conventional sampling designs, adaptive cluster sampling, stratified adaptive cluster sampling and systematic adaptive cluster sampling have been discussed whereas Chapter 3 contains some basic estimators that already developed in conventional sampling designs, adaptive cluster sampling, stratified adaptive cluster sampling and systematic adaptive cluster sampling designs. The major contribution of this dissertation appears from Chapter 4 by proposing modified ratio and regression-cum-modified ratio estimators using the information of single auxiliary variable in adaptive cluster sampling by utilizing the average values of the networks with simple random sampling without replacement. The expressions of approximate bias and mean square error for the proposed estimators have been derived. The generalized form for the proposed estimators has been suggested by introduction the unknown constants. The expressions of approximate bias and mean square error have been derived for the generalized form and optimum properties have been discussed. Many conventional and non-conventional parameters of the auxiliary variable have been used as special cases of the proposed estimators. The efficiency issues in adaptive cluster sampling have also been discussed. Theoretical comparisons have been made of the proposed estimators with existing estimators. An extensive numerical study is conducted by using real and artificial population data sets for all the estimators to evaluate their performance. In Chapter 5, weighted exponential ratio-product type estimator have been developed using single auxiliary variable in adaptive cluster sampling for the situations in which the relationship between the survey variable and the auxiliary variable is non-linear. The expressions of approximate bias and mean square error have been derived. A simulation study is conducted to evaluate the performance of the proposed estimator with existing exponential type estimators. In Chapter 6, a generalized semi-exponential type estimator has been suggested based on two auxiliary variables in adaptive cluster sampling. Some exponential and non-exponential type estimators have been discussed, as the special cases of the proposed estimator. The expressions of estimated bias and minimum mean square error have been derived. A simulation study is conducted on simulated populations generated by Poisson cluster process and Ecodist Package in R, to examining the performance of proposed estimator in adaptive cluster sampling design. In Chapter 7, modified ratio and regression-cum-modified ratio estimators have been developed using the information of single auxiliary variable in stratified adaptive cluster sampling. The generalized form for the proposed estimators has been suggested by introduction the unknown constants. The expressions of approximate bias and mean square error have been derived and optimum properties have been discussed. Theoretical comparisons have been made of the proposed estimators with existing estimators. An extensive numerical study is conducted by using real and artificial population data sets for all the estimators to evaluate their performance. In Chapter 8, a generalized semi-exponential type estimator has been suggested based on two auxiliary variables by utilizing the average values of the networks in stratified adaptive cluster sampling. Some exponential and nonexponential type estimators have been discussed, as the special cases of the proposed estimator. The expressions of approximate bias and minimum mean square error have also been derived. A simulation study is conducted using the simulated populations generated by Poisson cluster process at different level of rarity and aggregation to examining the performance of proposed estimator in stratified adaptive cluster sampling design. In Chapter 9, modified ratio and regression-cum-modified ratio estimators have been developed using the information of single auxiliary variable in systematic adaptive cluster sampling. The generalized form for the proposed estimators has been suggested by introducing the unknown constants. The expressions of approximate bias and mean square error have been derived and optimum properties have been discussed. Theoretical comparison has been made of the proposed estimators with existing estimators. A numerical study is conducted by using artificial population data sets taken from Thompson (2012) for all the estimators to evaluate their performance.