حدود آرڈیننس میں کی جانے والی ترامیم
حدود آرڈیننس میں بھی وقت کے گرزنے کے ساتھ ساتھ کچھ تبدیلیاں کی گئی ہیں ،۔ یہ تبدیلیانں زیادہ ترزنا کے حوالے سے ہوئی ہیں ۔ یہ تبدیلیاں مندرجہ ذیل ہیں:
Pseudomonas aeruginosa is a widespread organism, caused severe nosocomial infection in human and associated with multiple drug resistance (MDR)Objective: The present study was carried out to observe current antimicrobial resistant pattern of Pseudomonas aeruginosa in Lahore and to detect the Metallo-beta-lactamase (MBL) gene in carbapenem resistantPseudomonas aeruginosaMethods: By screening 360 samples total 123 Pseudomonas aeruginosa was identified by standard microbiology techniques such as microscopy and biochemical testing. The isolated Pseudomonas aeruginosa was evaluated for drug resistance by disc diffusion method and polymerase chain reaction(PCR) was used to identify the carbapenem resistance causing gene (bla-VIM and bla-IMP) Results: Following antibiotic resistant pattern was observed, Gentamycin (59.00%), Ceftazidime(58.7%), Ceftriaxone (58.00%), Cefotazime (57.0%) and Ciprofloxacin (55.00%). Resistance rates to carbapenem group of antibiotics is Doripenem (30.5%) Meropenem(31.0%) and Imipenem (28.0%). Out of 123 samples of Pseudomonas aeruginosa, 28 isolates were found resistant to carbapenem group of antibiotic which was supposed to be highly sensitive for this bacterium. Molecular based identification of resistance genes showed that bla-IMP gene was present in 32.1% (09) and bla-VIM was found positive in 17.8% (04) samples. Metallo-beta-lactamasesproducing genes (bla-VIM and bla-IMP), amongcarbapenem resistant Pseudomonas aeruginosa were detectedin 28.1% of samples. If other carbapenem resistant gene were also included this number might be higherConclusions: PCRbased test should be included in routine laboratory examination for quick detection of the resistancecausing genes.
During the last decade, progress in genome engineering had a giant leap with huge applications in basic and synthetic biology. The resulting genome engineering revolution, now known as gene editing, was mostly driven by the introduction of engineered endonucleases, specifically zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR) RNA-guided nucleases (e.g., Cas9) and transcription activator like effector nucleases (TALENs). In higher eukaryotic systems, targeted mutagenesis is frequently achieved by non-homologous end joining (NHEJ) based repair of DNA double-strand breaks (DSB) induced site specifically by engineered nucleases resulting knockdown or malfunction of the targeted genes. Genimiviruses have become a serious threat to a number of crops in Pakistan. This study was initiated with the major objective of demonstrating TALEN technology for suppression of cotton leaf curl virus (CLCuV), a major menace to cotton crop in Pakistan. DNA sequences of five most prevalent strains of cotton leaf curl virus were aligned to identify consensus regions for TALEs/TALEN targeting. TALEs/TALENs were constructed using golden gate cloning strategy. Activity of TALEs/TALENs for virus suppression was successfully demonstrated in Nicotiana benthamiana by challenging with infectious clones of, specifically, cotton leaf curl kokhran virus (CLCuKV). DSBs in the targeted region were determined by T7E1 assay. Virus accumulation was assessed by qPCR and TALEN expression was analyzed by RT-PCR. Inoculated plants showed varying degree of resistance to CLCuKV in three ways; attenuated virus infection, delayed symptoms and lower virus accumulation. Thesis results successfully demonstrate the potential of TALEs/TALEN technology for CLCuV suppression which can be a broader genome editing platform for suppression of other viruses.