اماں ملی نہ، ترستے رہے اماں کے لیے
تو زہر پی لیا تسکینِ جسم و جاں کے لیے
ہے میرے سر کو فقط تیرے نقشِ پا کی طلب
مری جبیں ہے ترے سنگِ آستاں کے لیے
خدا کرے کہ یہ ان آندھیوں سے بچ جائے
کہ تنکا تنکا جو رکھا ہے آشیاں کے لیے
نگاہِ بد سے بچے حسن کا وہ صدقہ دے
یہ مشورہ ہے مرا میرے مہرباں کے لیے
وہ ایک ایک مسافر نگاہ میں رکھے
بہت ضروری ہے یہ میرِ کارواں کے لیے
غم حیات کا سورج ہے سر پہ تو کیا غم
کسی کی یاد ہی کافی ہے سائباں کے لیے
چمن کو چھوڑ کے جانے لگے ہیں تائبؔ جی
قسم خدا کی یہ مژدہ ہے باغباں کے لیے
This paper critically analyses pre-9/11 diasporic identity of Muslims living in the US as immigrants or expatriates depicted in The Reluctant Fundamentlist (TRF) and Home Boy (HB) authored by minority outgroup Muslims (MO). The pre-9/11 identity and image of Muslims has exacerbated from erotic, primitive, barbaric, ignorant, close-minded and semicitizen to maddened, fundamentalist, blood-thirsty and terrorist after the attacks. The study attempts a textual analysis of the novels in the light of Rosenau’s model (2003) of diasporic acculturation process and social identity theory (ST). Given this stereotyping, this study endeavours to dissect the pre-9/11approach Muslims immigrants adopt to negotiate their religious identity in the hostland: whether they are fanatic and diehard separatist or they are moderate and assimilative into the enlightened values of the West. Opposite to popular assumptions, the protagonists have been found very much assimilative and adoptive to the host culture and also adhere to their homeland culture as well.
This thesis is based on a geometrical/physical analysis of the conserved quantities/forms related to each Noether symmetry of the geodetic Lagrangian of plane symmetric and spherically symmetric spacetimes. We present a complete list of such metrics along with their Noether symmetries of the geodetic Lagrangian. The conserved quantities corresponding to each Noether symmetry are obtained. Thereafter, a detailed discussion of the geometrical and physical interpretation of these quantities is given. Additionally, the structure constants of the associated Lie algebras are obtained for each case. Furthermore, we find the Ricci tensors to see which metrics are gravitational wave solutions and the scalar curvatures are obtained in each case to analyze the essential singularities. The stress-energy tensors and their traces are obtained in each case as these are the sources of spacetime curvature. The last part of this thesis is to use the symmetries to obtain the invariant solutions whenever possible. The problem of constructing the optimal system has been be used to classify invariant solutions. We intend to find the one-dimensional optimal systems of the Lie subalgebras for the system of geodesic equations by using Noether symmetries. Further, we find the invariants corresponding to each element of the optimal system. These invariants enable one to reduce the system of geodesic equations (nonlinear system of 2nd order ordinary differential equations (ODEs)) to a system of first order ODEs. The resulting systems are solved via known methods (e.g., separation of variables, integrating factor etc). In some cases, we are able to get exact solutions of the system of geodesic equations.