Search or add a thesis

Advanced Search (Beta)
Home > Assessment of Depositional Environment Using Molecular Geochemistry

Assessment of Depositional Environment Using Molecular Geochemistry

Thesis Info

Author

Muhammad Amin Abid

Department

Chemistry Engineering Deptt U E T

Institute

University of Engineering and Technology

Institute Type

Public

Campus Location

UET Main Campus

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2006

Thesis Completion Status

Completed

Page

96 H B, ill.; diagrs.

Subject

Life Sciences, Biology

Language

English

Other

Call No: 579.1714 M 89 A

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676712342963

Similar


Loading...

Similar Thesis

Showing 1 to 20 of 100 entries
TitleAuthorSupervisorDegreeInstitute
University of Engineering and Technology, Lahore, Pakistan
PhD
Quaid-i-Azam University, Islamabad, Pakistan
PhD
University of the Punjab, Lahore, Pakistan
University of Engineering and Technology, Lahore, Pakistan
BS
International Islamic University, Islamabad, Pakistan
Allama Iqbal Open University, Islamabad, Pakistan
Allama Iqbal Open University, Islamabad, Pakistan
University of Engineering and Technology, Lahore, Pakistan
PhD
University of Peshawar, Peshawar, Pakistan
PhD
Hamdard University, Karachi, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
University of Engineering and Technology, Lahore, Pakistan
PhD
University of the Punjab, Lahore, Pakistan
PhD
University of the Punjab, Lahore, Pakistan
BCS
COMSATS University Islamabad, Islamabad, Pakistan
RPH
COMSATS University Islamabad, Islamabad, Pakistan
PhD
University of the Punjab, Lahore, Pakistan
PhD
University of Peshawar, Peshawar, Pakistan
PhD
University of Poonch, Rawalakot, Pakistan
TitleAuthorSupervisorDegreeInstitute
Showing 1 to 20 of 100 entries

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

ملکی وسائل اور ان کا استعمال

ملکی وسائل اور ان کا استعمال
دنیا کے تمام ممالک اپنے اپنے وسائل رکھتے ہیں اور ان وسائل کے صحیح استعمال سے ان کے باشندگان کی گاڑی شاہراہِ حیات پر رواں دواں ہے۔ ہر ایک کے وسائل مختلف ہیں اور ہر ملک ان وسائل کا استعمال مختلف انداز میں کرتا ہے۔
پاکستان بھی ان وسائل سے مالامال ہے اور اللہ تعالیٰ نے ان گراں قیمت وسائل سے پاکستان کی سرزمین کو بھر پور کر رکھا ہے۔ کسی ملک کی ترقی کا راز اپنے وسائل سے آشنائی ہے اور مزید برآں یہ کہ اپنے وسائل کا صحیح استعمال ہے۔ ہمارے پاس اللہ تعالیٰ نے تیل، کوئلہ، لوہا اور نمک کی صورت میں معدنی وسائل کا ذ خیر و فراہم کیا ہوا ہے، اسی طرح قدرتی گیس بھی موجود ہے لیکن ان سے کما حقہ فائدہ صرف اسی طور پر اٹھایا جاسکتا ہے کہ ان کا استعمال سائنسی بنیادوں پر ہو، ان کے استعمال میں شعوری اور فکری قویٰ کو بروئے کار لایا جائے۔
سائنسی بنیادوں پر اس کا استعمال کرنے سے ان کی افادیت بڑھ جاتی ہے، ان کی فراہم کردہ سہولتوں میں متعدد اضافہ ہو جاتا ہے۔ تیل کا اگر صحیح استعمال کریں گے۔ اس سے وسیلہ قدرتی کی افادیت سے کما حقہٗ فائدہ اٹھائیںگے تو اس سے ملک کی خوشحالی میں اضافہ ہوگا۔ ملک میں چلنے والے کارخانے اپنی پیداوار میں اضافہ کریں گے، انسان کی مجموعی پوزیشن بحال ہوگی۔ اس کی عظمت رفتہ عود کر آئے گی۔
قدرتی وسائل سے مالامال قوم جب اس کا استعمال سیکھ جاتی ہے تو پھر اس کا شمار ترقی یافتہ اقوام میں ہونا شروع ہو جا تا ہے۔ اس کے بچے، نوجوان اور بوڑھے ایک مثالی کردار ادا کرتے ہیں، بعض وسائل ایسے ہوتے ہیں جو زمین کے اندر ہوتے ہیں اور بعض وسائل ایسے ہوتے ہیں جو زمین...

Jenkins’ Deliberations on Communal Conflict with the Leaders of Punjab: 1946-47 (Part-II)

Bhim Sen Sacher informed Jenkins about the destruction caused by arson in Lahore. Akbari Mandi, Chune Mandi, Chauhatta Basti, Bhagat Singh Basti, Kucha Kagzian and Pipal Vehra had been burnt down. The fire brigade could not cope with those vast and dispersed areas. If someone tried to extinguish the fire he was shot at by the police. Bhim Sen Sachar suggested that the only way to save Lahore was to impose martial law in the city. He hoped that the Governor would take that step immediately.64 Jenkins thanked Lala Bhim Sen Sachar and Gokul for their letters informing him about Lahore. Jenkins explained that fire brigade had done a good job in spite of constraints and difficulties. He believed that all communities had access to incendiary materials, and could use it without detection by traversing joined roof-tops. Throwing fire-balls from one house to another was wreaking devastation. Checking trouble of that kind was not an easy job, but searches were carried out and culprits were arrested.6

Symmetry Analysis and Conservation Laws of Physical Models on Curved Surfaces

Physical models with non-flat background are important in biological mathematics. Most of the biological membranes are not flat in general. For example, membranes which convert energy in mitochondria and chloroplasts are tubes, buds and may be sheets. In most of the biological processes, the geometry of membranes is very important. The organization and shape of the membranes play a vital role in biological processes such as shape change, fusion- division, ion adsorption etc. A cell membrane is a system for exchange of energy and matter from the neighbourhood. Absorption and transformation of conserved quantities such as energy and matter from the environment are one of the characteristics of membranes. The shape of proteins, non zero curvature of membranes and involvement of conserved quantities lead one to discuss physical models on curved surfaces. Conservation laws play a vital role in science and also helpful to construct potential systems which can be used to calculate exact solutions of differential equations. Physical models on curved surfaces govern partial differential equation which need not to be derivable from variational principle. The partial Noether approach is the systematic way to construct the conservation laws for non-variational problems. The group classification and conservation laws for some partial differential equation on curved surfaces are presented in this dissertation. In particular some linear and nonlinear models of heat and wave equation on plane, cone, sphere are classified. The conservation laws for the (1 + 2)-dimensional heat equation on different surfaces are constructed via partial Noether approach and then the results are generalized for the (1+n)-dimensional case. The symmetry conservation laws relation is used to simplify the derived conserved vectors and exact solu- tions are constructed. We also extend these results to a special type of (1 + n)-dimensional linear evolution equation. Potential systems of some models from different sciences are also given. The similar analysis is performed for the (1 + 2)-dimensional wave equation on the sphere, cone and on flat surface. Furthermore, the nonlinear heat equation on curved surfaces is considered. A class of func- tions is found on the plane, sphere and torus, which is not only independent of the number of independent variables but also independent of the background metric. We consider whether the background metric or the nonlinearity have the dominant role in the infinitesimal gen- erators of heat equation on curved manifolds. Then a complete Lie analysis of the time dependent Ginzburg-Landau equation (TDGL model) is presented on the sphere and torus. In addition, for the (1 + n)-dimensional nonlinear wave equation (Klein Gordon Equation) it is proved that there is a class of functions which is independent from number of independent variables. Then for the (1 + 2)-dimensional wave equation it is proved that there is a class of functions which is invariant either the underlying space is a plane, sphere or torus.