Search or add a thesis

Advanced Search (Beta)
Home > Exploratory Field Study of Farmers Irrigation Practices in Selected Fields

Exploratory Field Study of Farmers Irrigation Practices in Selected Fields

Thesis Info

Author

Riazahmad, Muhammad

Department

Center of Excellence in Water Resources, UET

Institute

University of Engineering and Technology

Institute Type

Public

Campus Location

UET Main Campus

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

1996

Thesis Completion Status

Completed

Page

xxiii, 327 . : ill, table, grah, 28 cm.

Subject

Engineering

Language

English

Other

Hardcover.; Call No: 627 A 5 E

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676712482732

Similar


Loading...

Similar Thesis

Showing 1 to 20 of 100 entries
TitleAuthorSupervisorDegreeInstitute
University of Engineering and Technology, Lahore, Pakistan
University of Engineering and Technology, Lahore, Pakistan
Mphil
Aga Khan University, Karachi, Pakistan
MEd
Aga Khan University, Karachi, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
PhD
University of Agriculture, Faisalabad, Pakistan
PhD
University of Agriculture, Faisalabad, Pakistan
University of Engineering and Technology, Lahore, Pakistan
MEd
Aga Khan University, Karachi, Pakistan
MEd
Aga Khan University, Karachi, Pakistan
MS
International Islamic University, Islamabad, Pakistan
PhD
University of Agriculture, Faisalabad, Pakistan
PhD
University of Agriculture, Faisalabad, Pakistan
MS
International Islamic University, Islamabad, Pakistan
MBA
International Islamic University, Islamabad, Pakistan
University of Engineering and Technology, Lahore, Pakistan
PhD
University of Peshawar, Peshawar, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
PhD
University of Agriculture, Faisalabad, Pakistan
MBA
University of Management and Technology, Lahore, Pakistan
TitleAuthorSupervisorDegreeInstitute
Showing 1 to 20 of 100 entries

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

اسلام رواداری کا علمبردار

اسلام رواداری کا علمبردار
اسلام کی رحمت و شفقت کا دائرہ کسی خاص قوم و ملت کے لیے نہیں ہے بلکہ اس کا دائرہ کار پورے عالم انسانیت تک پھیلا ہوا ہے۔ اسلام نے تمام مخلوق کے ساتھ نیکی ، احسان اور بھلائی کا حکم دیا ہے۔حضور اکرم صلی اللہ علیہ و آلہٖ وسلمنے فرمایا ہے:۔’’ساری مخلوق خدا کا کنبہ ہے اور اس کے نزدیک سب سے پسندیدہ مخلوق ہے جو اس کے کنبہ کے ساتھ نیکی کرے۔‘‘ (طبرانی وبیہقی)
یہ پہلا سبق تھا کتابِ ہُدیٰ کا
کہ ہے ساری مخلوق کُنبہ خدا کا
’’جوشخص لوگوں پر رحم نہیں کرتا اس پر خدا بھی رحم نہیں کرتا۔‘‘ (ترمذی)
کرو مہربانی تم اہلِ زمیں پر
خدا مہرباں ہو گا عرشِ بریں پر
مذکورہ بالا احادیث مبارکہ سے یہ بات واضح ہورہی ہے کہ اسلام رواداری کا علمبردار ہے۔ وہ ہر ایک کو برابری کی سطح پر دیکھنا چاہتا ہے۔ ایک اور مقام پر بھی کچھ اس طرح کا فرمان رسالت مآب صلی اللہ علیہ و آلہٖ وسلم ہے کہ’’ اللہ تعالیٰ کی نظر میں تمام برابر ہیں‘‘ اسلام میںیہ نہیں ہے کہ جو صرف مسلمان پر رحم نہیں کرتا اس پر اللہ تعالیٰ بھی رحم نہیں کرتا ،بلکہ حکم ہے جو لوگوں میں رحم ،شفقت و محبت کے جذبات کو پروان نہیں چڑھا تا وہ خدائے لم یزل کی بے پایاں شفقتوں سے محروم ہو جاتاہے۔ اسلام میں کسی کی تخصیص نہیں کی گئی۔ یہودی ہو ، عیسائی ہو، مجوسی ہو، آتش پرست ہویا زرتشت ہوانسان ہونے کے ناطے سب برابر ہیں۔ اسی طرح ایک اور حدیث پاک میں ہے کہ جنّت ماں کے قدموں کے نیچے ہے، یہاں یہ نہیں کہا کہ ماں مسلمان ہو، با وضو ہو کر جائے نماز پر بیٹھ کر تسبیح کرنے میں مصروف ہو ،قرآن کا ابتدائی قاعدہ...

Perception of Working Mothers on Child Development: A Qualitative Study from Pakistan

The inclusion of women in the workforce is imperative for the advancement of every country in the world. In Pakistan the role of women is undergoing dynamic transformation which can have considerable influence on the mother-child relationship and child development. This research attempts to understand the influence of out-of-home maternal employment on the development of child, as perceived by mothers. The study is qualitative in nature using snowball sampling. A total of six working mothers were interviewed from Lahore, Pakistan. Thematic analysis technique has been used to analyze the data. The following themes were identified: (i) Child Neglect; (ii) Strained Child-Parent Relationship; (iii) Child Aggression; (iv) Low Academic Achievement; and (v) Independence and Sense of Responsibility. The study concludes that working mothers need family and employer support to ensure child development in Pakistan. Some of the key reforms that are needed include respect for women’s triple role in society and employment benefits for working mothers.

Feature Selection Using Rough Set Based Heuristic Dependency Calculation

The amount of data to be processed is significantly increasing day by day. The increase in data size is not only due to more number of records but also due to substantial number of attributes added to space. The phenomenon is leading to the dilemma called curse of dimensionality i.e. datasets with exponential number of attributes. The ideal approach is to reduce the number of dimensions such that resulted reduced set contains the same information as present in the entire set of attributes. There are various approaches to perform this task of dimensionality reduction. Recently, rough set-based approaches, which use attribute dependency to carry out feature selection, have been prominent. However, this dependency measure requires the calculation of the positive region, which is a computationally expensive task. In this research, we have proposed a new concept called the “Dependency Classes”, which calculates the attribute dependency without using the positive region. Dependency classes define the change in attribute dependency as we move from one record to another. By avoiding the positive region, they can be an ideal replacement for the conventional dependency measure in feature selection algorithms, especially for large datasets. A comparison framework was devised to measure the efficiency and effectiveness of the proposed measure. Experiments on various publically available datasets show that the proposed approaches provide significant computational performance with same accuracy as provided by conventional approach. We have also recommended seven feature selection algorithms using this measure. The experimental results have shown that algorithms using the classes were more effective than their counterparts using the positive region-based approach in terms of accuracy, execution time and required runtime memory.