Search or add a thesis

Advanced Search (Beta)
Home > Robotic Arm With Plc Control

Robotic Arm With Plc Control

Thesis Info

Author

Tanveer Ahmad Chughtai

Department

Department of Mechanical Engineering, UET

Institute

University of Engineering and Technology

Institute Type

Public

Campus Location

UET Main Campus

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2004

Thesis Completion Status

Completed

Page

ix, 144 . HB, ill.; diagrs.

Subject

Engineering

Language

English

Other

Call No: 629.892 T 15 R

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676712557001

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

المبحث الثاني: سبب تسميتها بنازك الملائكة

المبحث الثاني: سبب تسميتها بنازك الملائكة

 اسم نازک اسم ترکي، ولدت شاعرۃ العراق الحزینۃ عقب الثورۃ التي قادتھا الثائرۃ السوریۃ (نازک العابد) ضد الإحتلال الفرنسي، فسماھا أبوھا بذلک الإسم، أیضاً رأیٰ جد الطفلۃ أن تسمیٰ نازک إکراماً للثائرۃ وتعظیماً لھا وھذہ الطفلۃ کانت جدیۃ منذ طفولتھا تکرہ المزاح والثرثرۃ، استفادت الشاعرۃ من ھذہ الجد یۃ في المستقبل فأصبحت شاعرۃ العراق الحزینۃ المعروفۃ ورائدۃ(الشعر الحر)۔

الملائکة المھذبون

 یشرح الدکتور نزار[1] (شقیقھا) عن اسم العائلۃ (الملائکۃ) بأنّ أطلِقَ علیھم الملائکۃ لھدوئهم وانطوائهم الإیجابي علی الذات وأنھم بالأصل من عائلۃ جلبي(تلفظ شلبي) وھي عائلۃ کبیرۃ ومعروفۃ. وأخبر نزار بأن قد جاء شاعر عراقي علی زیارتنا ورأی ھدوء وسکینۃ العائلۃ، وکان یرانا ھادئین لا نسبب الضجیج للجیران فسمانا ملائکۃ ، فانتشر ھذا اللقب بالحي۔

 وأیضاً تروي الکاتبۃ اللبنانیۃ ’’حیاۃ شرارۃ‘‘[2] بأنّ اسم الملائکۃ قد أطلق علی العائلۃ قبل قرنین من الزمن وذلک بسبب التھذیب المفرط لأبنائها، وأنّ أباھا صادق الملائکۃ أعطاھا اسم نازک تعظیماً بنازک العابد، إحدی المناضلات السوریات ضد الإحتلال الفرنسي في الربع الأول من القرن العشرین[3]۔

 

 



[1] نزار: شقیق نازك الملائکۃ سبق التعرف علیہ

[2] حیاۃ شرارۃ: الکاتبۃ اللبنانیۃ ولدت في عام 1935 لمدینۃ النجف۔ وأکملت دراستھا في بغداد، لھا ترجمات ومؤلفات، کتبت القصۃ والمقالۃ أیضاً، تزوجت من الدکتور محمد صالح سمیسم

[3] بزیغ، شوقي ’’نازك الملائکۃ وداعاً‘‘: ’’الشاعرۃ الثائرۃ تستکین للموت‘‘ مجلۃ العربي، ع 585 (أغسطس:2007) ص:90۔

دور جدید میں میڈیا کی ضرورت و اہمیت اور حقیقت احوال

This article highlights the role of media in the contemporary world. Man since his birth had bestowed with quest to enfold the encompassing surroundings. In addition, due to his very nature, it is almost impossible for him to keep himself indifferent from environment. With the process of time, his primitive means of communication enhanced to the level that is playing a vital role in the current globalized social set up. Consequently, string of communication has been expended and manifested in print, electronic and social media. Media can play a very constructive, positive and meaningful role in accordance with the parameters laid down in Islam. But at the same time, it has a negative edge that can put human social set up in chaos and destruction. Current situation is that media specially western media is plaing a very undesirable role that is not only detrimental for the world as a whole, but specifically for the Muslim World. Greater responsibility lies on the shoulders of media to play his positive and apostolic role. In the article, the writer highlights the incredible role of media for establishment of interfaith harmony and peace in human society. He stresses that man is in nuclear era, the situation is very tense and little mis-happening can destroy the whole world.

Temporal Human Action Detection in Long and Untrimmed Videos

With the advancement in information and communication technologies, sensing devices have now become pervasive. The pervasiveness of camera devices has enabled recording of video data at anytime and anywhere. It gives rise to a massive amount of untrimmed video data being produced, which consist of several human-related activities and actions including some background activities as well. It is important to detect the actions of interest in such long and untrimmed videos so that it can be further used in numerous applications i.e., video analysis, video summarization, surveillance, retrieval and captioning etc. This thesis targets temporal human action detection in long and untrimmed videos. Given a long and untrimmed video, the task of the temporal action detection is to detect starting and ending time of all occurrences of actions of interest and to predict action label of the detected intervals. Detecting human actions in long untrimmed videos is important but a challenging problem because of the unconstrained nature of long untrimmed videos in both space and time. In this work we solve the temporal action detection problem using two di erent paradigms: \proposal + classi cation" and \end-to-end temporal action detection". In proposal + classi cation approach, the regions which likely to contain human actions, known as proposals, arerst generated from untrimmed videos which are then classi ed into the targeted actions. To this end, we propose two di erent methods to generate action proposals: (1) un-supervised and (2) supervised temporal action proposal methods. In therst method, we propose unsupervised proposal generation method named as Proposals from Motion History Images (PMHI). PMHI discriminates actions from non-action regions by clustering the MHIs into actions and nonaction segments by detecting minima from the energy of MHIs. The strength of PMHI is that it is unsupervised, which alleviates the requirement for any training data. PMHI outperforms the existing proposal methods on the Multi-view Human Action video (MuHAVi)- uncut and Computer Vision and Pattern recognition (CVPR) 2012 Change Detection datasets.PMHI depends upon precise silhouettes extraction which is challenging for realistic videos and for moving cameras. To solve aforementioned problem, we propose a supervised temporal action proposal method named as Temporally Aggregated Bag-of-Discriminant-Words (TAB) which work directly on RGB videos. TAB is based on the observation that there are many overlapping frames in action and background temporal regions of untrimmed videos, which cause di culties in segmenting actions from non-action regions. TAB solve this issue by extracting class-speci c codewords from the action and background videos and extracting the discriminative weights of these codewords based on their ability to discriminate between these two classes. We integrate these discriminative weights with Bag of Word encoding, which we then call Bag-of-Discriminant-Words (BoDW). We sample the untrimmed videos into non-overlapping snippets and temporally aggregate the BoDW representation of multiple snippets into action proposals. We present the e ectiveness of TAB proposal method on two challenging temporal action detection datasets: MSR-II and Thumos14, where it improves upon state-ofthe- art methods. \Proposal + classi cation", requires multiple passes through testing data for these two stages, therefore, it is di cult to use these methods in an end-to-end manner. To solve this problem, we propose an end-to-end temporal action detection method known as Bag of Discriminant Snippets (BoDS). BoDS is based on the observation that multiple actions and the background classes have similar snippets, which cause incorrect classi cation of action regions and imprecise boundaries. We solve this issue bynding the key-snippets from the training data of each class and compute their discriminative power which is used in BoDS encoding. During testing of an untrimmed video, wend the BoDS representation for multiple candidate regions andnd their class label based on a majority voting scheme. We test BoDS on the Thumos14 and ActivityNet datasets and obtain state-of-the-art results.