نہر کنارہ
نہر کنارے بیٹھا ہوں میں
بہتا پانی دیکھ رہا ہوں
اُجلا پانی ، تیز روانی
سُرسُر ، سُرسُر کرتا جائے
میٹھے میٹھے گیت سنائے
نہر کنارے بوٹے سارے
ناچیں ، گائیں ، جھومیں ، جھولیں
طوطا ، چڑیا ، بلبل ، مینا
رنگ برنگی بولی بولیں
یہ کیسا پیارا منظر ہے
شام اُداسی لے کر آئی
یہ منظر بھی اک منظر ہے
میرا دیکھا بھالا منظر
خوف کا ہے اک کالا منظر
شام کے جاتے ، رات کے ہوتے
سارے بوٹے سو جاتے ہیں
تو پھر چاند نکل آتا ہے
میں اُس سے باتیں کرتا ہوں
میں جتنی باتیں کرتا ہوں
میں تیری باتیں کرتا ہوں
یوں ہی رات گزر جاتی ہے
اور سویرا ہو جاتا ہے
میں شب بھر ہوں نہر کنارے
میں دن بھر ہوں نہر کنارے
نہر کنارہ دنیا میری
The present study investigates the socio-economic problems of the labors in Brick Kilns which are situated in the vicinities of district Hyderabad (Rural). Eighty three respondents from twenty five brick kilns were selected for interview. It is found that majority of the respondents was illiterate and never visited educational, technical and religious institutions. The economic categorization of the labors revealed that majority was categorized as ‘poorest of poor’ (living below poverty line), having semi-pacca houses, earning less than 10,000 rupees per month to manage their entire family. Due to very low income they spent least amount on education and health while more on food and utilities. The general problems reported by the labors are: poor quality of drinking water, no shelter at work place, child labor, low and late payment of wages, long working hours etc. Besides these, both male and female labors informed about misbehave and use of abusive language by the owner/manager, even few of them also complained about physical abuse. Stomach problem was found as common disease in men followed by Anemia whereas in women Anemia was ranked first followed by Backache.
Latentfingerprintsaretheimpressionsofpartialridgesleftonthesurfaceofobjects touched unintentionally at crime scenes and constitute a valuable source of evidence in law enforcement agencies to helpsolve crimes. However,majority of the processing (marking regionof interest(ROI),singularpoints(SP),orientationfieldandminutiaepoints)for latentprintsidentificationisdonemanuallybyforensicexperts.Theexistingmethods involve forensicexpertstomanually markthe featuresin latentandtheninput ittothe systemforautomaticmatchingwithreferenceprints.Thematcherreturnsalistof candidates thatare manuallycheckedbyexperts totake final decision.Thepracticeof manuallymarkingfeaturesinlatentsislaborious,timeconsumingandhumandependent whichmayresultsinwrongidentification.Thereforethereisaneedtoautomatethis process to avoid aforesaidconstraints. This thesis describes an automatedapproach of segmentation andenhancement for latent fingerprints identification.Currently,afew attemptshavebeenmade inthisrespectand still remain a challenging problem due to: (i) poor quality, (ii) small friction ridge area,(iii) presence of non-linear distortion,(iv) blurringor smudging,and(v) complexbackground noise. In this research, an algorithm for automated segmentation of latent fingerprints is proposed. The latent image datais classifiedintoclusters using K-means clustering techniquewhich results in pixels having similar characteristicsto fit in one cluster (foreground) while pixels having opposite characteristicsto other cluster (background).Tophat filtering is appliedto enhance the clustered data and mask is generated on the basis of this enhanced information. Segmentation is achievedby applying thegenerated maskon latent image.The proposed algorithm forsegmentationof latent fingerprintsisautomatedwithout anysortof human involvement.Performanceofproposedalgorithmisevaluatedbycomputingthemissed detection rate (MDR) and false detection rate (FDR) and comparison of proposed method withotherexistingalgorithmsisdone.SimulationresultsonNISTSD-27(databaseof latentfingerprintimagescontaining258latentfingerprintsalongwiththeirmatedrolled prints)showsignificantperformanceenhancementofproposedmethodhavingaverage MDR and FDR of 4.77% and 26.06% respectively. Furthermore, subjective comparison is made usingvisual segmentation reliability(VSR)which istheratioof intersectional area ofautomated and ground truthlatent to manually marked segmented latent. VSR approaches to 90% for good quality images, 70-80% for bad quality images and 50-60% for ugly qualityimages.Matchingperformance isimprovedwhen thesegmentedinputis applied to commercial-off-the-shelf(COTS tenprint)matcherascompared with un- segmentedinput. Another contribution of proposed research is towards the enhancement of latent fingerprints. Enhancement of segmented latent isperformed using Gabor filter bank. It has five image-dependent-parameterslikeorientation ∅ ,standarddeviations ?�and ?�ofthe Gaussian function,timeperiodTandthe convolutionmasksize.Theselectionof these parametersplaysacrucial roleinfingerprintenhancementspecificallytheorientation∅ andstandarddeviation ?� and ?� .Thelatentimageis dividedintoblocks of WxW centered at pixel (i,j)and gradients ��� and ��� along x-axis andy-axis are computedby applying Sobel operator at everypixel.Orientation ∅ is computedon the basis ofthese computed gradients. Ridge frequency F(i, j) is estimated by calculating the grey level value of each pixel, housed in the block, and is projected in a direction perpendicular to the local ridgeorientationandridgespacingS(i,j).Animprovementinfrequencyestimationis achievedbyintroducingGaussianlowpassfilterthatminimizesthenoiselevels.Ridge orientation ∅ and frequency F(i, j) is used to design an even-symmetric Gabor filter. Spatial convolution of thelatentfingerprint withGaborfilter isperformedtogenerateenhanced latentimage.SimulationresultsonNISTSD-27showthatimprovementinmatchingis increased 11% in comparison toautomatedlatent fingerprint segmentation and enhancementalgorithmby Zhang et al in 2013.