مولوی مجید حسن
افسوس ہے پچھلے دنوں مولوی مجید حسن صاحب مالک اخبا ر مدینہ بجنور کا انتقال ہوگیا۔مرحوم نے اپنے اخبار کے ذریعہ ملک وملّت کی جوعظیم اورطویل خدمات انجام دی ہیں اُن کوہندوستانی صحافت کی تاریخ کاکوئی طالبِ علم نظر انداز نہیں کرسکتا۔ اُن کی پوری زندگی جدوجہد اورمحنت ومشقت کی تفسیر تھی اوراس اعتبارسے وہ آج کل کے نوجوانوں کے لیے ایک لائقِ تقلید نمونہ تھے۔علمائے دیوبند کے بڑے گرویدہ اورنہایت مخیر وسیر چشم انسان تھے، اﷲ تعالیٰ اُن کی قبر ٹھنڈی رکھے۔ [جنوری ۱۹۶۷ء]
This article discuses technology used to develop graphic material in fine arts classes. The purpose of fine arts classes is to teach students to draw on a variety of graphic materials; to teach them to see, comprehend, understand and appreciate the beauties of being and art; to develop aesthetic and artistic taste, to expand the scope of artistic thought; to develop artistic creativity and imagination, to help them find their own style, their own way of creativity.
Nowadays the excessive use of internet produces a huge amount of data due to the social
networks such as Twitter, Facebook, Orkut and Tumbler. These are microblogging sites
and are used to share the people opinions and suggestions on daily basis relevant to the
certain topic. These are beneficial for decision making or extracting conclusions. Analysis
of these feeds aims to assess the thinking and comments of people about some personality
or topic. Sentiment analysis is a type of text classification and is performed by various
techniques such as Machine Learning Techniques and shows that the text is negative,
positive or neutral. In this work, we provide a comparison of most recent sentiment
analysis techniques such as Na?ve Bayes, Bagging, Random Forest, Decision Tree,
Support Vector Machine and Maximum entropy. The purpose of the study is to provide an
empirical analysis of existing classification techniques for social media for analyzing the
good performance and better information retrieval. A comprehensive comparative
framework is designed to compare these techniques. Various benchmark datasets (UCI,
KAGGLE) available in different repositories are used for comparison purpose. We
presented an empirical analysis of six classifiers. The analysis results that Random Forest
performs much better as compared to other. Efforts are made to provide a conclusion
about different algorithms based on numerical and graphical metrics to conclude that
which algorithm is optimal.