خلیل الرب
گزشتہ مہینے جناب خلیل الرب صاحب وفات پاگئے، وہ پھولپور (الٰہ آباد) کے رہنے والے تھے، محکمہ تعلیمات میں ملازم تھے، اس سلسلے میں اعظم گڑھ برسوں قیام رہا شبلی منزل برابر تشریف لاتے، اردو سے عشق تھا۔ ادب و تنقید پر چند کتابیں بھی لکھیں، یو پی اردو اکیڈمی اور مسلم یونیورسٹی کورٹ کے ممبر تھے، باغبانی اور چمن آرائی کا عمدہ ذوق تھا، دارالمصنفین کی گولڈن جوبلی کے موقع پر ان ہی نے چمن بندی کی تھی جس کو ڈاکٹر ذاکر حسین صاحب نے بہت پسند کیا تھا اور ان سے گلاب کی بعض قسمیں دہلی منگائی تھیں۔ اﷲ تعالیٰ مغفرت فرمائے۔ آمین!! (ضیاء الدین اصلاحی، اگست ۱۹۹۹ء)
There is quite difference between ownership and right of use in other words usufruct, at present this term is widely used in Islamic financial institutions for beneficial ownership. But the use of this term is entirely changed from western law and Islamic law. Particularly in Islamic law, legality of a product or things depends on its objectives. In this article it has been discussed in detail in the light of different school of thoughts of Islamic jurisprudence.
In this dissertation new algorithms have been presented for the numerical solution of three-dimensional elliptic and parabolic partial differential equa- tions subject to Dirichlet boundary conditions. A numerical method based on Haar wavelet collocation technique(HWCT) is being formulated for numer- ical solution of 3D elliptic partial di erential equations(PDEs) and systems involving such equations. The newly developed numerical technique is ap- plied to both linear and nonlinear 3D elliptic PDEs and systems involving such PDEs. The proposed numerical is also applied to the time-invariant fully nonlinear Navier-Stoke''s model equations. In case of solving linear el- liptic PDEs, the resulting algebraic system of equations is solved by using Gauss elimination method. Whereas for nonlinear elliptic PDEs we used Newton''s or Broyden''s method. A hybrid numerical method based onnite di erence method and 3D HWCT is developed for the numerical solution of 3D parabolic PDEs and systems involving such PDEs. This hybrid numerical technique is applied to both linear and nonlinear parabolic PDEs including systems. In case of non- linear parabolic PDEs quasilinearization technique was applied to linearize the nonlinear terms. The time derivatives involved in parabolic PDEs is ap- proximated by thefinite difference method. The numerical simulations of all newly developed numerical techniques are performed using MATLAB. The efficiency and accuracy of the proposed numerical methods is vali- dated via various linear and nonlinear test problems including systems from the literature. The numerical results of these test problems are compared with the exact solutions as well as with the existent methods in literature. The maximum absolute errors and experimental rate of convergence have been calculated for different number of collocation points. The numerical re- sults shows better accuracy, efficiency and simple applicability of the newly developed numerical methods.