طوطے تے گالڑ دی دوستی
اک واری دی گل اے کہ اک جنگل وچ اک طوطا رہندا سی۔ طوطا بہت خوش سی کہ اوس نوں جنگل وچوں کھاون لئی وافر پھل مل جاندے نیں۔ اوہ ایہناں نوں کھاندا تے جنگل دی سیر کردا۔ اک دن اوہ امرود دے درخت اتے بیٹھا امرود کھا رہیا سی کہ اک گالڑ وی اوس درخت اتے چڑھ آندا اے۔ پہلاں اک دوجے دے یار بن جاندے نیں۔ طوطا گالڑ نوں امرود کھواوندا اے تے اپنے گھر آون دی دعوت دیندا اے۔ ایس توں بعد طوطا تے گالڑ اپنے اپنے گھر آ جاندے نیں۔
کئی دناں توں بعد اک دن ہلکے ہلکے بدل آئے ہوئے سن۔ ٹھنڈی ہوا چل رہی سی۔ گالڑ گھر وچ ویہلا سی۔ اوس دے من وچ خیال آیا کہ کیوں نہ اج طوطے دے گھر پھیرا پایا جاوے۔ ایس خیال دے آوندیاں ای اوہ تیار ہو کے طوطے دے گھر اپڑ جاندا اے۔ طوطا اوہنوں اپنے گھر ویکھ کے بہت خوش ہوندا اے تے جی آیاں نوں آکھدا اے۔ جنگل وچوں ہر طرح دے پھل اکٹھا کر کے اوہدی مہمان نوازی کر دا اے۔ گالڑ سب کجھ کھا کے طوطے کولوں گھر واپسی دی اجازت لیندا اے۔ واپسی تے گالڑ طوطے نوں اپنے گھر آون دی دعوت دیندا اے۔ جو طوطا قبول کر لیندا اے۔
کجھ دناں بعد طوطا گالڑ دے گھر جاون دا پروگرام بناندا اے۔ اوہ تیار ہو کے اوہدے گھر جاندا اے۔ اوہدا گھر اک سکی ٹاہلی اتے ہوندا اے۔ گالڑ طوطے نوں خوش آمدید آکھدا اے تے خوشی دا اظہار کردا اے۔ گالڑ کدی ٹاہلی دے اپر چڑھدا اے تے کدی تھلے اتر دا اے۔ طوطا اوہدا ایہہ عمل ویکھ کے ڈاڈا حیران ہوندا اے۔ جدوں بہت وقت لنگھ گیا تاں طوطے نے سوچیا کہ...
This study aims to identify the significance of driver’s socioeconomic demographics (SEDs) in the decision to speed and crash involvement. A questionnaire was designed consisting of a driver’s SEDs, speeding propensity, and crash experience. This questionnaire was conducted with the students and employees of the University of Nizwa and other drivers at the selected locations. A total of 604 usable samples were obtained. Simple frequency distribution and discriminant multivariate analysis were conducted on the driver’s responses. Survey results revealed that about 47.7% of the drivers have experienced a crash. The driver’s gender nationality, profession, age, type of vehicle drive, driving experience, and past crash experience are significant attributes of the driver’s speeding behavior. Ordered probit analysis for speeding behavior and simple probit regression analysis for crash involvement was conducted. The male drivers and those who are under the age of 30 years and have driving experience of more than 3 years have more likelihood to exceed the speed limits than other drivers. Similarly, the driver’s gender, age (≤ 30 years), and those who are employees have a significant correlation with the propensity of crash involvement. Male and young drivers have more likelihood to be involved in a crash.
Function optimization (constrained and unconstrained) is a process of finding the optimal point for the given problem. As the research is being carried out and new problem areas are being investigated, global optimization problems are getting more and more complex. The research presented in this dissertation is about to build a new accelerated function optimization technique based on evolutionary algorithm (EA). EAs have low convergence rate due to their evolutionary nature. The acceleration of evolutionary algorithm in the function optimization is achieved by incorporating gene excitation. In General, the distribution of the initial population into the search space effects the evolutionary algorithm performance. Concept of opposition based populations is employed to distribute the chromosomes more effectively. Image Segmentation is a significant and successful way for many real world applications like segmenting lung from CT scanned images. Segmentation is the process of finding optimal segments within an image. The main objective of this thesis is to make a new entirely automatic system that segments the lungs from the CT scanned images. To achieve this objective, a completely automatic un-supervised scheme is developed to segment lungs. The methodology utilizes a fuzzy histogram based image filtering technique to remove the noise, which preserves the image details for low as well as highly corrupted images. Peaks and Valley are found in bimodal group of images using Genetic Algorithm (GA). GAs are used for function optimization process and hence determining the global optimal solutions. The optimal and dynamic grey level is find out by using GA. Finding optimal clustering within a dataset is an important data mining task. Clustering and segmentations are somewhat related optimization problems of finding optimal grouping in the provided set of points. Clustering of datasets has been achieved by using an entirely automatic un-supervised approach. The employed technique optimizes multi- objective as compared to optimize single objective for clustering. Relative cloning is performed to adopt the individuals according to their fitness, which improves the algorithm performance.