Search or add a thesis

Advanced Search (Beta)
Home > Muslim Bank Online [ ]

Muslim Bank Online [ ]

Thesis Info

Author

Ahsan Rasool; Talha, Muhammad; Imran Qadir; Ishtiaq Ahmad

Department

University of Management and Technology

Institute

University of Management and Technology

Institute Type

Private

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2002

Thesis Completion Status

Completed

Page

149 .

Subject

Economics

Language

English

Other

Report presented in partial requirement for ? degree Advisor:; EN; Call No: TP 332.10285 MUS-

Added

2021-02-17 19:49:13

Modified

2023-01-07 14:22:16

ARI ID

1676712947480

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

اور حُسن ہار گیا

”اور حُسن بھی ہا ر گیا“

سیمیں کرن

کچھ روز سے میں اِک عجیب سے مخمصے سے دو چار ہوں۔ با ت کرتے کرتے کہیں کھو جا تی ہوں۔ میری حا ضر جوا بی و شگفتہ بیا نی جیسے مفقود ہو کررہ گئی ہے۔ اِک عجیب سی پز مر دگی سی چھائی ہو ئی ہے یوں کچھ کھو گیا ہو جو دھو نڈنے پر بھی مل کر نہ دے رہا ہو۔ اِک بے چینی نے میرے و جود کا احاطہ کر رکھا ہے۔ میں نا قا بلِ بیان اذ یت میں ہوں شکست و ریخت کے عمل سے دو چا ر ہوں۔ در اصل ہُوا یوں کہ ___مگر نہیں یوں آپ سمجھ نہیں پائیں گے پہلے میرا تعا رف ضروری ہے۔ میں ایک پینتیس چا لیس سا لہ نو جوا ن خا تون ہوں۔ پینتیس چا لیس سا لہ اورنو جوا ن۔ میرے اِس متضا د بیا ن پر یقینا ہنس رہے ہوں گے۔ آپ اپنی ہنسی میں حق بجا نب ہیں اور اپنے بیا ن میں مَیں بھی غلط نہیں۔ در اصل آپ نے مجھے دیکھا نہیں اگر دیکھ لیتے تو یقینا میرے بیا ن کی صحت پر ایما ن لے آتے۔ آپ اسے میری خو ش فہمی سمجھئے یا مجھے احساسِ بر تری سے ما ری ہو ئی حُسن کے زعم میں گُم کو ئی مغرور حسینہ مگر سچ یہی ہے کہ میں خود شنا س ہوں۔ میں جا نتی ہوں کہ میں اُن چند خوا تین میں سے ہُوں جن کے حُسن و جوا نی پر وقت جیسے آکر ٹھہر سا جا تا ہے اوراس صو رتِ حا ل سے میں اِ ک طویل مدت سے لطف اندوز ہو رہی ہوں۔ مجھے دیکھ کر لوگ پو چھتے ہیں:" Are you miss or mrs"اور جب...

جماعت احمدیہ کے مولوی عبد اللطیف بہاولپوری کی چار قرآنی سورتوں کی تفاسیر کا تحقیقی و تنقیدی جائزہ

This informative article is a vital as well as analytical analyze of the several Sūrʼas translated as well as defined by Mūlvi Abdul Latīf around the facets of the guidelines connected with Translation as well as Tafsīr set by Mirza Ghulām Ahmad Qādyāni founder of Jamʽat-e-Āḥmadiya. Who offered a brand new principle connected with Tafsīr to verify the inappropriate beliefs as well as his views that are total contrary to the principles set by authentic former Muslim scholars. Many Qādyāni Mufasrīn implemented those principles within their books connected with Tafsīr. Most notable ended up being Mūlvi Abdul Latīf Bahāwalpūri who had written this Translation as well as Tafsīr of 5 Sūrʼas i. ESūrʼa Banī ʼisraeel, Sūrʼa Kahaf, Sūrʼa Yāseen, Sūrʼa Qiyāmah and Sūrʼa Dahar. He implemented the guidelines set by Mirza Ghulām Ahmad Qādyāni. Throughout his work he created a number of alterations not only with Translation but with Tafsīr too. This article is an eye bird review of the principles of the Translation as well as Tafsīr connected with Holy Qurʼan set by authentic former scholars.

Sdpm ?An Effective Model for Software Defect Prediction Using Artificial Neural Networks?

Predicting software defect is considered as one of the most dynamic research field in the domain of software engineering. Prediction of defects can improve the software quality by indicating the particular areas in advance where faults are more likely to occur. Software defect prediction models have accomplished the significant acceptance in software industry in the last decade. Prediction and prevention of defects in beginning stages of software?s development can reduce the whole development time and cost by reducing the testing efforts. The widely used data mining models for defect prediction includes one or more of the following machine learning techniques: ?Logistic Regression (LR), Naive Bayes (NB), K-Nearest Neighbor (k-NN), Neural Network (NN), Decision Tree (DT), Support Vector Machine (SVM), and Random Forest (RF)?. According to latest research, Neural Networks come up with higher accuracy than other mathematical and statistical models. Artificial Neural Network is widely accepted supervised learning approach to deal with the prediction problems in multiple domains of the software engineering such as ?effort estimation, cost estimation and software defect prediction?. Many researchers have proposed models based on Neural Networks for software defect prediction, however wide comparison with benchmark datasets were lacked. Moreover, in most of researches, WEKA was used which has limited parameters for developing Neural Networks. In this study, a model will be proposed by using ANNs for the effective defects prediction with Feed-Forward and Feed-Back techniques in MATLAB, which provides more parameters for the development and tuning the Neural Networks. An empirical comparison of ?Levenberg-Marquardt, Bayesian Regularization, Scaled Conjugate Gradient and BFGS Quasi-Newton? back propagation training algorithms will be performed. The performance of proposed model will be analyzed by using benchmark datasets available in NASA MDP repository. A GUI based Neural Network Simulator will developed to assess and tune the performance of our ANNs models which will provide the options to select appropriate learning function along with different combinations of hidden layers and the numbers of neurons in each layer.