Search or add a thesis

Advanced Search (Beta)
Home > Nano-Cmos Spice Level Implementation of Different Modules for Direct Digital Frequency Synthesis Application [Bs Program] [+Cd]

Nano-Cmos Spice Level Implementation of Different Modules for Direct Digital Frequency Synthesis Application [Bs Program] [+Cd]

Thesis Info

Author

Hassan Muhuyuddin; Faisal Yaseen; Moazam Ali Khan; Ramsha Ayub

Supervisor

Jameel Ahmad

Department

University of Management and Technology

Program

BS

Institute

University of Management and Technology

Institute Type

Private

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2014

Thesis Completion Status

Completed

Page

61 . CD

Subject

Engineering

Language

English

Other

Report presented in partial requirement for BS degree Advisor: Jameel Ahmad; EN; Call No: TP 621.3815486 NAN-

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676713279510

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

نعت بحضور سرورِ کائناتﷺ

نعت بحضور سرورکائناتﷺ
(بر استدعا حاضری مدینہ )
’’ٹھنڈی ٹھنڈی وگنی اے پرے دی ہوائے نی
آکھیں نبیؐ پاک تائیں سانوں وی بلائے نی‘‘
رو رو کے یاداں وچ زندگی گذاری ہَے
اللہ جانے ساڈی کیوں نہیں آئوندی پئی واری ہَے
دیر بڑی ہوئی، دل روندا زار و زاری اے
محبوب نوں آکھیں ہن دیر نہ اوہ لائے نی
جاگے ایہہ نصیبا میرا روضے اُتے جاواں میں
اوتھے جد جاواں فیر مڑ کے نہ آواں میں
گل وچ پلڑا پا کے سائیں نوں مناواں میں
محبوب نوں آکھیں ہن جلد بلائے نی
دل بے قرار ہویا تیرے انتظار وچ
عجب نظارہ ڈٹھا آقاؐ تیرے پیار وچ
ساقی دا میخانہ کھلا طیبہ دے بازار وچ
جام بھر دلبر سب نوں پلائے نی
قادری دی ہر ویلے ایہو ای صدا ہَے
پاک مدینے رب دیوے پہنچا ہَے
آقاؐ دیاں قدماں چ مل جاوے جاء ہے
ساریاں ای دکھاں کولوں جان چھٹ جائے نی

 

ک:
کون ہے ہے یار دلدار میرا مینوں کس دی یاد ستاندی اے
کسدے ہجر نے مار مکایا ! اے الفت کسدی پئی تڑپاوندی
بھٹی ذات ہے یار دلدار میرا جان اوسے دے گیت پئی گائوندی اے
اقبال ؔ جس بیڑی دا بھٹی ملاح ہووے بلا خوف خطرے لنگ جاوندی اے

Peran Guru PPKn Dalam Menumbuhkan Kesadaran Diri Siswa Terhadap Tata Tertib Sekolah

Penelitian ini bertujuan untuk mengetahui peran guru PPKn dalam menumbuhkan kesadaran diri siswa terhadap tata tertib sekolah di SMP Negeri 7 Gunungsitoli. Penelitian ini menggunakan metode kualitatif dengan pendekatan deskriptif. Lokasi dalam penelitian ini adalah di SMP Negeri 7 Gunungsitoli dengan informan Kepala Sekolah, Guru PPKn dan siswa. Teknik pengumpulan data yang digunakan peneliti adalah teknik observasi, wawancara dan dokumentasi. Teknik analisis data dalam penelitian ini adalah pengumpulan data, reduksi data, penyajian data dan verifikasi data. Dari hasil penelitian ditemukan adanya peran guru PPKn dalam menumbuhkan kesadaran diri siswa terhadap tata tertib sekolah antara lain (1) Guru sebagai korektor yang menilai semua sikap dan perbuatan siswa, (2) Guru sebagai motivator yang memotivasi siswa untuk dapat menaati tata tertib sekolah, dan (3) Guru sebagai pembimbing yang membimbing siswa menjadi manusia yang taat pada aturan sekolah. Selanjutnya kendala yang dihadapi guru PPKn dalam menumbuhkan kesadaran diri siswa terhadap tata tertib sekolah yaitu sifat dan karakteristik siswa yang berbeda-beda yang terkadang mengabaikan arahan dan bimbingan yang disampaikan oleh guru. Adapun upaya guru PPKn untuk mengatasi kendala tersebut yaitu terus mengingatkan siswa tentang tata tertib, menjadi contoh teladan bagi siswa dan melakukan pendekatan kepada siswa yang melanggar tata tertib sekolah.

Tumor Detection, Classification and Risk Assessment in Digital Mammograms

Breast cancer (BC) is the highest cause of deaths in ladies around the globe. Woman are unaware in the remote and backward areas of under developed and developing states, that treatment of breast cancer is possible if it is found at an early stage. The casualties of BC can also be reduced, if demographic risk factors of female are evaluated a prior. Due to its nature of complexity, identifying breast irregularity through mammography and/or ultrasonography is a challenging job for radiologists. A more consistent and precise imaging based computer aided diagnosis (CAD) system assists in recognition of breast cancer at initial stage and play a noteworthy role in the classification of suspicious breast lesions. Ultrasonography of breast is acknowledged as the utmost significant support to mammography for patients with palpable masses and unsatisfying results of mammograms especially in case of young female. Therefore, a CAD system is required for breast ultrasound (BUS) images to distinguish malignant and benign cases. This dissertation has two main modules: the first one is CAD system and second one is the risk assessment of BC. In the proposed CAD framework, pre-processing is executed to remove the unwanted area and suppress the noise from the mammography and ultrasonography images. Then segmentation detects the lump in mammograms and BUS images using cascading of Fuzzy C-Means (FCM) and region-growing technique called FCMRG method and marker-controlled watershed transformation respectively. Hyrbrid features extraction technique employing local binary patterns and gray level cooccurance matrix (LBP-GLCM) along with local phase quantization (LPQ) is used for mammography to extract significant information from segmented masses. Morphological features of ultrasound breast lesion are designed to extract various statistical parameters from contour and shape properties. These features are then used to differentiate benign masses from malignant one using support vector machine (SVM), decision tree (DT), K nearest neighbors (KNN), linear discriminant analysis (LDA) and ensemble classifier. The goodness of the proposed CAD model is evaluated through performance measures on Mammographic Image Analysis Society (MIAS), Digital Database for Screening Mammography (DDSM) and Open Access Series of Breast Ultrasonic Data (OASBUD) datasets. The proposed CAD system achieved remarkable accuracy (=98.2%) with hybrid features on MIAS dataset and (=96%) with morphological features on transverse scan of OASBUD dataset. The proposed CAD system can also be implemented for the patients residing in the rural and backward areas to diagnose the scanned images of mammography and ultrasonography and to detect breast anomalies in the nonavailability of expert radiologists and weak cellular coverage. In second module, demographic risk factors of female have been employed to evaluate the risk grade (that is low, moderate, high) in a specific lady under investigation. For this purpose, Adaptive neuro fuzzy inference system (ANFIS) with sub-clustering and FCM is used and achieved high accuracy on the patient data gathered through questionnaire. The outputs of the CAD system can also be used to merge with demographic risk factors of the patients to find the future prediction of possibly occurring breast cancer risk.