Search or add a thesis

Advanced Search (Beta)
Home > Perceived Parenting Styles, Procrastination and Self-Esteem in University Students [Ms Program] [+Cd]

Perceived Parenting Styles, Procrastination and Self-Esteem in University Students [Ms Program] [+Cd]

Thesis Info

Author

Qandeel Mahmood

Supervisor

Sara Subhan

Department

UMT. Institute of Clinical Psychology

Program

MS

Institute

University of Management and Technology

Institute Type

Private

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2015

Thesis Completion Status

Completed

Page

84 . CD

Subject

Medicine & Health

Language

English

Other

Report presented in partial requirement for MS degree Advisor: Sara Subhan; EN; Call No: TP 616.8900835 QAN-P

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676713387412

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

سلطان کھاروی تے اصنافِ سخن

سلطان کھاروی تے اصناف سخن

پنجابی کوتا دے بھرے بھنڈارا تے جھا ت پائیے تاں ایہہ گل نترکے سامنے آندی ہے کہ ایس بھاگاں والی بولی دا پلا بہت ساریاں اصناف سخن نال بھرپور ہے۔ حیاتی دے ہرپکھ نوں وکھو وکھ اصناف سخن بیان کردیاں نیں۔ اک ہور اچرج گل ایہہ وے کہ ایس بولی دا ہر کوی اک توں ودھ اصناف سخن وچ بیان کرن دی صلاحیت رکھدا ہے۔ جس توں ایہناں کو یاں دی ذہانت دا گویڑ لایا جا سکدا اے۔ ایس بولی دے ہر کوی نے اپنے انمول وچاراں نوں وکھو وکھ اصناف سخن وچ بیان کرکے کیول ایس دے ساہت دی امیری وچ حصہ ای نہیں پایا سگوں اپنے آپ نوں مہان کوی وی ثابت کیتا اے۔ ایہناں کو یاں و چوںاک پرسدھ ناں سلطان کھاروی ہور اں دا وی اے۔ جہناں اپنے وکھو وکھ کو تاپراگیاں وچ کئی اصناف سخن وچ کوتا لکھی اے۔ جس دا مختصرویرورانج اے۔

سلطان کھاروی دی حمد نگاری

’’ حمد ‘‘ عربی زبان دا شبد ہے جس دے ارتھ تعریف کرنا یاں شکر کرنا دے نیں ‘‘(۱)

’’حمد دا مطلب اے الحمد اللہ کہنا حمد( ع۔امث) خدا کی تعریف افعال ۔ کرنا ۔ ہونا‘‘(۲)

 ’’قرآن پاک وچ ’’ الحمد ‘‘ دا شبد چوی وار آیا اے۔‘‘(۳)

ایس لئی مسلمان ایہہ شبد اپنی عام گل کتھ وچ کثرت نال ورت دے نیں ۔ جس توں مراد ر ب دی تعریف تے شکر لیندے نیں۔ کیوں جے اوہناں دا یقین اے کہ خوشی تے غم ، دکھ تے مصیبت آرام تے سکون، خوشحالی تے تنگی ، حیاتی تے موت سبھے کجھ رب ولوں آئوندا اے۔ ایس لئی اوہو ذات ، حمد ،...

ENHANCING REHABILITATION PRACTICES THROUGH ROBUST REGULATION AND INTERDISCIPLINARY COLLABORATION IN PAKISTAN

Rehabilitation forms an important tire in well operating health care systems. Within the areas as mentioned on the World Health Organisation factsheet about rehabilitation the therapeutic professions such as physiotherapists, occupational therapists, speech and language therapists, prosthetists and orthotists and clinical psychologists play an important role. They do not only treat people’s conditions such as diseases, disorders, injuries or trauma, they furthermore promote good health and help to prevent diseases. This can significantly lead to better overall wellbeing of the population. To gain the best client outcome and support the health care system in an effective way, regulation is as important as interprofessional collaboration. Thus there is an intense need to highlight these two main aspects to ensure quality rehabilitation provided by therapeutic professionals.

View-Based Biometrics

Biometric recognition systems are considered to be one of the most secured means of authentication. In this context several biometrics have been proposed but the view based biometrics such as face, iris etc remain the most natural choice. In the paradigm of face recognition, it is generally assumed that major information contents lie in the lower frequency region of an image and therefore little effort has been made in sys tematic exploration of the detail images. Although some wrapper-based approaches have been proposed in the literature, they are primarily based on experimental eval uation of a specific classifier on various subbands. Therefore there is a dire need of a framework for automatic selection of the most significant subbands based on the underlying statistics of the data. In this thesis, the problem of identifying the most dis criminant subbands based on information theoretic measures is addressed. Essentially the face images are transformed into textures using the linear binary pattern (LBP) ap proach, these texturized-faces undergo the wavelet packet decomposition resulting in several subband images. We propose to use the energy features to effectively represent these subband images. The underlying statistical patterns of the data are harnessed in form of information-theoretic metrics to select the most discriminant subbands. The proposed algorithms are extensively evaluated on several standard databases and are shown to always pick the most significant subbands resulting in better performance. The proposed algorithms are entirely generic and do not depend on the validation re sults for specific classifiers. Noting that localized features are often more useful than theholisticapproaches, wehavealsotargetedtheproblemofirisrecognitionproposing the concept of class-specific dictionaries. Essentially, the query image is represented as a linear combination of training images from each class. The well-conditioned inverse problem is solved using least squares regression and the decision is ruled in favor of the class with the most precise estimation. An enhanced modular approach is further proposed to counter noise due to imperfect segmentation of the iris region. As such iris images are partitioned and individual decisions of all sectors are fused using an efficient fusion algorithm. The proposed algorithm is compared to the state-of-the-art Sparse Representation Classification (SRC) with Bayesian fusion for multiple sectors. The proposed approach has shown to comprehensively outperform the SRC algorithm on standard databases. Complexity analysis of the proposed algorithm shows decisive superiority of the proposed approach.