Search or add a thesis

Advanced Search (Beta)
Home > Online Property Rent &Amp; Academia World Version Iii [Bs Program] [+Cd]

Online Property Rent &Amp; Academia World Version Iii [Bs Program] [+Cd]

Thesis Info

Author

Sarah Iqbal

Department

University of Management and Technology

Program

BS

Institute

University of Management and Technology

Institute Type

Private

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2016

Thesis Completion Status

Completed

Page

99 . CD

Language

English

Other

; Call No: TP 005.74333012 SAR-O

Added

2021-02-17 19:49:13

Modified

2023-02-17 21:08:06

ARI ID

1676713546621

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

آرتھر ہیورڈ

مسٹر آرتہر ہیورڈ

لندن کے امپرئیل کالج آف سائنس میں مسٹر آرتہر ہیورڈ سائنس سے متعلق ایک تجربہ کرتے کرتے وفات پاگئے، وہ کچھ عرصہ سے فن تصویر کشی (فوٹوگرافی) سے متعلق تجربات میں مشغول تھے، اور آخری تجربہ ایک تاریک کمرہ کے اندر کررہے تھے، کمرہ میں روشنی کا کسی۔۔۔۔ ان سے گذر نہ تھا، اور اس کی چھت اور دیواریں سیاہ رنگ سے رنگی ہوئی تھیں، کمرہ اندر سے بند تھا، کہ وفعتہ زور سے ایک تڑاقا ہوا، مسٹر موصوف کے استاد پروفیسر بون باہر تھے، وہ یہ آواز سن کر دوڑے کمرہ کے اندر انھوں نے جھانکا تو معلوم ہوا بجلی کی روشنی ہورہی ہے، ایک ہتھوڑا لے کر انہوں نے دروازہ توڑا اور اندر گئے تو دیکھا کہ مسٹر ہیورڈ خون میں شرابور پڑے ہوئے ہیں اور دیکھتے ہی دیکھتے ختم ہوگئے، پروفیسر بون کی رائے میں جس آلہ سے وہ تجربہ کررہے تھے، اتفاقاً پھٹ گیا اور اس کے اندر جو زہریلی گیس تھی، اس کے صدمہ سے ان کی گردن سخت مجروح ہوئی اور یہی باعث ہلاکت ہوا۔ (فروری ۱۹۲۱ء)

خواجہ محمد خلیل رحمۃ اللہ علیہ حیات، علمی، ادبی و تصنیفی خدمات

Khuwaja Muhammad Khalil Khan (R.A) was born in 1920 A.D In Aligarh and completed his Islamic Education under Syed Amjad Ali Azmi, he was among of the prominent contemporary in the Literarily History of Subcontinent. His masterly work as reformer in the major fields of Islamic Sciences show his profound approach to them. He wrote on jurisprudence, Commentary on Hadith, Doctrines, and on societal problems. Of which few books are prescribed for syllabus at national and international seminaries. He led the foundation of AHSAN UL BARKAT in Hyderabad which is spring of scholars. His areas of studies comprises on different fields of Islamic Studies. His remarkable work on the particular fields also reflects his deep study on it. The aim of this paper is to produce before muslim ummah the unparalleled services of this great Hanafi scholar of Sindh; Khuwaja Muhammad Khalil Khan (RA) not only proved himself as a distinguished jurist, but also regarded as an authority by the scholars of the Pak o Hind, who used to refer him for the solution of religious problems.

A Study of Some Aspects of Topologized Groups

A Study of Some Aspects of Topologized Groups A topological group is a mathematical object along with algebraic and topological structures. In this thesis our motivation is to study topological properties in the presence ofalgebraic structure particularly when the mappings are not continuous. It is a common question in topological algebra that how the relationship between topological properties depends upon the underlying algebraic structure. It is noticed that weaker the restriction in between algebraic structure and topology are, the larger is the class we obtain. Since we have weakened the condition of continuity and replaced it with the weaker form that is semi continuity and irresolute mapping and resultantly obtained s-(S-, Irresolute, Irr-) paratopologized or topologized groups. The purpose of this thesis is to give a mostly self contained study of s-(S-, Irresolute, Irr-) paratopologized or topologized groups. It is shown that every irresolute paratopological group is Irr-paratopological group as well as s-topological group. Every paratopological groups is s-paratopological group as well as S-paratopological group, and every Irr- paratopological group is S-paratopological group. Counter examples are given to show that such paratopological groups are generalized forms of the corresponding topologized groups. We have also defined and studied quasiboundedness of irresolute paratopological groups and s-paratopological groups. New notions- quasi bounded and - quasi bounded homomorphisms are introduced and discussed. In Chapter number six, we have defined semi-quotient mappings which are stronger than semi continuous mappings. Various interesting and important results on semi-quotients of paratopologized groups are proved. We have also studied semi connectedness for topologized groups.