ﷺ
درود نامہ
سیکھا ہے قدسیوں سے ، ہم نے درود پڑھنا
سیکھا ہے مومنوں سے ، ہم نے درود پڑھنا
سیکھا ہے بادلوں سے ، سیکھا ہے بارشوں سے
سیکھا ہے موسموں سے ، ہم نے درود پڑھنا
سیکھا ہے خوشبوؤں سے ، پھولوں سے ہم نے سیکھا
سیکھا ہے تتلیوں سے ، ہم نے درود پڑھنا
سیکھا سمندروں سے ، لہروں سے ہم نے سیکھا
سیکھا ہے مچھلیوں سے ، ہم نے درود پڑھنا
سرو و ثمن سے سیکھا ، کوہ و دَمن سے سیکھا
سیکھا ہے وادیوں سے ، ہم نے درود پڑھنا
دستِ دعا سے سیکھا ، ہر اِلتجا سے سیکھا
سیکھا ہے خواہشوں سے ، ہم نے دُرود پڑھنا
آہِ رسا سے سیکھا ، بادِ صبا سے سیکھا
سیکھا ہے رابطوں سے ، ہم نے درود پڑھنا
ہر صبحِ نو سے سیکھا ، ہر شامِ غم سے سیکھا
سیکھا ہے رَتجگوں سے ، ہم نے درود پڑھنا
وقتِ سحر زباں پر ، صلّ علیٰ کا نغمہ
سیکھا ہے طائروں سے ، ہم نے درود پڑھنا
سوزِ نہاں میں ڈوبا صلِ علیٰ پکارا
سیکھا ہے بلبلوں سے ، ہم نے درود پڑھنا
جو شہد میں شفا ہے ، شیریں دُرُود سے ہے
سیکھا ہے ذائقوں سے ، ہم نے درود پڑھنا
ہر درد کی دوا ہے ، ہر دکھ کا ہے مداوا
سیکھا ہے غم زدوں سے ، ہم نے درود پڑھنا
ایسے گُناہ جھڑتے ہیں ، جیسے خشک پتّے
سیکھا ہے عاصیوں سے ، ہم نے درود پڑھنا
کلمہ پڑھا درختوں کی ڈالیوں نے جھک کر
سیکھا ہے کونپلوں سے ، ہم نے درود...
Allah has revealed Holy Quran to guide and transform the lives of human being. According to Hadith, Quran was revealed in seven dialects because it is the name of wisdom. So, seven alphabets have numerous philosophies and benefits embedded in them. In this article introduction of Quran along with literal and figurative meanings have been elaborated. Details of seven alphabets have been explained vividly besides literal and figurative meanings of seven alphabets have been expounded. After that three important axioms of savants have been narrated. Amongst them, Imam Razi’s axiom is cited specially. In the last, modern axiom is given with explanation in a lucid way. A part from that, the logics and reasons behind the revelation of Quran in seven dialects have been deliberated including revelation of Quran in Arabic language, affection of the Holy Prophet (P.B.U.H) for Ummah, convenience for Muslim Nation, satisfaction for nature, eradication of linguistic bias amongst Arabs, consensus of two commands, narration of two commands of different versions. Abundance of virtues, legitimacy of Qur’an, statures of readers and replicators of readers and others have been mooted exhaustively. In the end, article is summarized in the light of modern era.
Evolutionary computing algorithms have been implemented successfully for optimization problems. Differential Evolution (DE) is one of the evolutionary global optimization algorithm which has enjoyed considerable interest by many researchers in the recent years. Due to intensive study of DE algorithm by researchers; a number of mutation variants have been established for this algorithm. These mutation variants make DE algorithm more applicable, but due to the random development of these variants have created inconsistencies such as naming and formulation. Therefore, this research work also aims to identify inconsistencies and propose solution to make them consistent. Most of the inconsistencies exist because of the uncommon nomenclature used for these variants. In this research a comprehensive study is carried out to identify inconsistencies in the nomenclature of mutation variants that does not match each other. Their proper and consistent names are proposed which provide significant contribution to the literature. The proposed names are assigned for conflicting variants that is based on the name of the variant, total number of vectors used to generate the trial vector and the order of the vectors to form the equation of these mutation variants. For effective conflict analysis of mutation strategies, trial vector generation mechanism of each variant is illustrated graphically. The consistent set of mutation variants will prove to be a valuable addition to DE literature. A number of variants have been proposed to improve the performance of DE. However, most of the variants suffer from the problems of convergence speed and local optima. A novel tournament based parent selection mutation strategy of DE algorithm (TSDE) is proposed in this research. The proposed mutation strategy enhances searching capability in terms of fitness and improves convergence speed of the DE algorithm in terms of number of function calls. This research work also presents statistical comparison of existing DE mutation variants, which categorizes these variants in terms of their overall performance. The proposed mutation strategy is tested for standard benchmark functions and validated to train the artificial neural network for data classification problem. This thesis also introduces random controlled pool base differential evolution algorithm (RCPDE). A mutation strategy pool and a control parameter pool are used in RCPDE. The mutation strategy pool contains mutations strategies having diverse characteristics and control parameter pool contains varying nature pairs of control parameter values. The author has also observed that addition of rarely used control parameter values in the parameter pool and mutation strategy in the strategy pool is helpful to enhance the average fitness value and the number of function call performance parameters of DE algorithm. The proposed mutation strategies pool and control parameters pool in RCPDE are helpful in improving the solution quality and convergence speed of DE algorithm. RCPDE algorithm is tested over a test set of multi dimensional (N-dimensional) benchmark functions that shows significant performance of the proposed algorithm over many state of the art DE algorithms. To validate the performance of RCPDE algorithm; it has been used to train artificial neural network for data classification problem. Through experimental studies it is proved that proposed TSDE achieved better performance than other mutation strategies of DE algorithm. Similarly random controlled mutation strategies pool and control parameter pool based DE algorithm (RCPDE) also shows significant performance in the experimental studies as compared to other well known state of the art algorithms such as jDE, EPSDE, CoDE and standard DE algorithm.