Search or add a thesis

Advanced Search (Beta)
Home > Tafsir Moaraf Ul Quran Az Mufti Muhammad Shafi Mein Sirati Mobahis Ka Tahqeeqi Motalea = تفسیر معارف القرآن از مفتی محمد شفیع میں سیرتی مباحث کا تحقیقی مطالعہ[M. Phil Takhasas Sirat Un Nabi Sallallaho Alehe Wassallam]

Tafsir Moaraf Ul Quran Az Mufti Muhammad Shafi Mein Sirati Mobahis Ka Tahqeeqi Motalea = تفسیر معارف القرآن از مفتی محمد شفیع میں سیرتی مباحث کا تحقیقی مطالعہ[M. Phil Takhasas Sirat Un Nabi Sallallaho Alehe Wassallam]

Thesis Info

Author

Muhammad Ali Naeem

Department

UMT. Sirat Chair

Program

Mphil

Institute

University of Management and Technology

Institute Type

Private

City

Lahore

Province

Punjab

Country

Pakistan

Thesis Completing Year

2016

Thesis Completion Status

Completed

Page

298 . CD

Subject

Islam

Language

English

Other

Department of Islamic Fikro Tahzeeb; Urdu; Call No: TP 297.1227 ALI-T

Added

2021-02-17 19:49:13

Modified

2023-02-19 12:33:56

ARI ID

1676714037328

Asian Research Index Whatsapp Chanel
Asian Research Index Whatsapp Chanel

Join our Whatsapp Channel to get regular updates.

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

فیض احمد فیض کی شاعری کی خصوصیات

رومانیت:
فیض اپنے کلام سے اپنے خشک زاہد اور ناصح ہونے کا تصور نہیں دیتے بلکہ پھول اور تلوار کے ساتھ ساتھ چشم و لب کی کاٹ کی باتیں بھی کرتے ہیں۔ ان کی اْفتاد ِ طبع رومانی ہے ان کے سینے میں پیار بھرا دل دھڑکتا ہے ان کے کلام میں لطافت اور نزاکت کی روحانی فضائ￿ چھائی رہتی ہے وہ تصورِ جاناں پر سب کچھ نچھاور کرتے نظر آتے ہیں۔
حسن ادا اور ندرت ِ بیان:
فیض ندرت بیان سے قاری کواپنے سحر میں جکڑ لیتے ہیں اور ان کے کلام کا جتنا زیادہ مطالعہ کیا جائے نئے نئے خیالات و تصورات و ا ہوتے جاتے ہیں کیونکہ ان کے ہاں ندرت بیاں اور حسن ادا کی دلکش مثالیں پائی جاتی ہیں۔
جذبات کی ترجمانی:
شاعری میں جذبات کی ترجمانی کے لئے صدق و خلوص انتہائی ضروری ہوتے ہیں صرف احساسات ، محسوسات اور جذبات کے بیان کا نام شاعری نہیں ہوا کرتا۔ فیض کے ہاں ہمیں پر خلوص جذبہ صداقت اور اْسلوب ِ اظہار پر کامل قدرت ہمیں بھر پور انداز میں ملتے ہیں۔
عشقیہ شاعری:
فیض کی شاعری حقیقی جذبات کی عکاسی کرتی ہے ان کی شاعری میں عشق و مستی اور چاہت ومحبت کا بھی کثرت سے ذکر ملتا ہے ان کی شاعری محبت کا ایک دل آویز نمونہ ہے اس اظہار میں چاند کی چاندنی کی سی ٹھنڈک اور سکون ، باد نسیم سی نازک خرامی کے علاوہ محبت کا لوچ اور رس ہمیں دلکش پیرایے میں نظر آتا ہے۔
وطن پرستی:
فیض کو اپنی مٹی سے پیا ر ہے۔ اس مٹی کو وہ محبوبہ کی طرح چاہتے ہیں۔ محبوبہ اور وطن میں وہ فرق نہیں کرتے
اسلوب:
دراصل فیض کا مخصوص لہجہ اور اسلوب ہی وہ جادو ہے جو قاری کو اپنا اسیر کر لیتا ہے اور ہر بار...

مميزات التشريع الجنائي في الفقه الإسلامي: دراسة تحليلية

Occidentals, in antagonism to Islam, propagate that Law of Jinai is too stringent and rigid. For the reason that in Islam, a living human being is stoned to death, his hands and legs are cut into pieces, and that he is hanged. Some of our modern Muslims have been impressed of the same propaganda and are trying to alter the Islamic set of laws; they further misinterpret the laws ordained in this regard. The fact is that every Islamic law, especially the law of Jinai, is in favour of human beings, having such qualities which laws of the other religions lack. For example, Islam has provided clear distinction between Had and penalty. In Islam, the purpose of punishment is to reform and these Hadoods are not enforced unless the doubts are cleared. This comprehensive provisionary role of Islam is over sighted by the occidental Scholars. 

Numerical Simulations of Fractional Order Nonlinear Dynamical Systems

Mathematical models play a role in analyzing and control infectious diseases in a population. These models construction clarifies assumptions, variables and parameters, and provide conceptual insights such as thresholds and basic reproduction numbers for various infectious diseases. Some very important theories are built and tested, some quantitative speculations are made and some specific questions are answered with the help of mathematical models. This leads to a better strategy for overcoming the transmission of diseases.For the last twenty years, chaos theory has brought about a valuable association between mathematicians and researchers in bio-medical sciences. Such association has described a biomedical system with ordinary and fractional order mathematical model usually consists of a nonlinear ordinary or fractional order differential equation or system of non-linear ordinary or fractional order differential equations. The fractional order mathematical model is used to predict the behavior of corresponding bio-medical system. The model must be investigated to guarantee that it does not foresee chaos in the bio-medical system under examination, when chaos is not actually present in the system. The mathematician must further confirm that any method used to solve the fractional order mathematical model does not envisage chaos when chaos is not a feature of the bio-medical system. The contrived chaos can be avoided and stability can be retained using implicit methods instead of using explicit numerical methods. In recent years, fractional differential equations have become one of the most important topics in mathematics and have received much consideration and growing curiosity due to the options of unfolding nonlinear systems and due to their prospective applications in physics, control theory, and engineering. The generalization is obtained by changing the ordinary derivative with the fractional order derivative. The benefit of fractional differential equation systems is that they allow greater degrees of freedom and incorporate the memory effect in the model. Due to this fact, they were introduced in epidemiological modeling systems. The main reason for using integer order models was the absence of solution methods for fractional differential equations. Various applications, like in the reaction kinetics of proteins, the anomalous electron transport in amorphous materials, the dielectrical or mechanical relation of polymers, the modeling of glass forming liquids and others, are successfully performed in numerous research works.The physical and geometrical meaning of the non-integer integral containing the real and complex conjugate power-law exponent has been proposed. Since integer order differential equations cannot precisely describe the experimental and field measurement data, as an alternative approach, non-integer order differential equation models are now being widely applied. The advantage of fractional-order differential equation systems over ordinary differential equation systems is that they allow greater degrees of freedom and incorporate memory effect in the model. In other words, they provide an excellent tool for the description of memory and hereditary properties which were not taken into account in the classical integer order model.In the present research work, we developed and investigated fractional order numerical techniques for the solution of fractional order models for infectious diseases, whose fixed points will be seen to be the same as the critical points of model equations and to have the same stability properties. These techniques will numerically analyze the behavior of solution of the fractional order models, stability analysis of the steady states and threshold criteria for the epidemics. The proposed techniques may be used with arbitrarily fractional order, thus making them more economical to use when integrating for arbitrary fractional order and may preserve all the essential properties like dynamical consistency, positivity and boundedness, of the corresponding fractional order dynamical systems.