مولانا لطف اﷲ صاحب کی وفات
در روزگار عشق تو ماہم فدا شدیم افسوس کز قبیلۂ مجنون کسے نماند
قدیم عربی مدارس کے در و دیوار اگرچہ ظاہری شان و شوکت کے لحاظ سے روز بروز بلند ہوتے جاتے ہیں، لیکن جھک کے دیکھتے ہیں تو سنگ بنیاد متزلزل نظر آتا ہے، ہماری قدیم تعلیم و تربیت کی جو یادگاریں، ان مدارس کا اساس تھیں، ایک ایک کرکے مٹ گئیں، ایک مولوی لطف اﷲ صاحب مرحوم رہ گئے تھے لیکن ۱۸؍ اکتوبر ۱۹۱۶ء کو صرصرفنانے ہماری علمی انجمن کے اس چراغ کو بھی گل کردیا، اناﷲ وانا الیہ راجعون۔
مولوی لطف اﷲ صاحب مرحوم میں قدیم تعلیم و تربیت کی تمام خصوصیات باکمل وجوہ موجود تھیں، علم اخلاق، اور مذہب قدیم تعلیم و تربیت کا مایہ خمیر تھا، اور انہی محاسن کی بناء پر ہمارے علماء قوم میں عزت، رسوخ اور اثر پیدا کرتے تھے، مولوی لطف اﷲ صاحب مرحوم کی ذات میں نہ صرف یہ محاسن جمع ہوگئے تھے، بلکہ وہ ان اوصاف میں عموماً اپنے اقران و اماثل میں ممتاز کیے جاتے تھے۔
اشاعت علم خالصۃً لوجہ اﷲ ہمیشہ ہمارے علماء کا تمغۂ امتیاز رہا ہے اور مولوی لطف اﷲ صاحب مرحوم نے اپنی عمر کا ایک کافی حصہ اس نیک کام میں صرف کیا، ہندوستان میں آج جس قدر علمی سلسلے قائم ہیں، اور جو علماء آج مسندنشین درس و تدریس ہیں، ان میں اکثر ایسے ہیں جنھوں نے مولوی لطف اﷲ صاحب مرحوم کے خرمن فیض کی خوشہ چینی کی ہے۔لیکن اﷲ تعالیٰ نے دولت دنیا سے بھی مولوی صاحب مرحوم کو کافی حصہ عطا فرمایا تھا، وہ ریاست حیدرآباد میں بمشاہرہ ایک ہزار مدتوں افتاء کی خدمت انجام دیتے رہے، لیکن...
The twentieth century is considered as the most notable era for interfaith dialogue and other interreligious activities among the followers of different faiths across the globe. A number of interfaith activities were launched to bring closer, especially, the adherents of the Abrahamic faiths: Jews, Christians and Muslims. Many Christian institutes and organizations are actively involved in such activities. We cannot ignore the role of Christian Study Centers situated across the globe, which are rendering considerable services in the field of interfaith dialogue. One of them is the Christian Study Center Rawalpindi (CSC), Pakistan, which is the focal subject of this research paper. The CSC has a long journey in the course of interfaith dialogue and harmony, as it was its objective since its commencement. The CSC was established in 1967 as an extension of HMI (Henry Martyn Institute, Hyderabad India) to promote interfaith dialogue, harmony and good relationship among the followers of different faiths in Pakistan. It is conceded; the Christian Study Center Rawalpindi has provided great services and contributed a lot to interfaith dialogue, harmony and peace in Pakistan. In this study the efforts were made to evaluate the 50 years dialogical activities of the Christian Study Center (CSC), Rawalpindi.
For a connected graph G the distance d(u;v) between two vertices u;v 2V(G) is the length of the shortest path between them. A vertex w of a graph G is said to resolve two vertices u and v of G if d(w;u) 6= d(w;v). Let W = fw1;w2; ::::;wkg be an ordered set of vertices of G and let v be a vertex of G. The representation of a vertex v with respect to W denoted by r(vjW) is the k-tuple (d(v;w1);d(v;w2); :::;d(v;wk)). If distinct vertices of G have distinct representations with respect toW, thenW is called a resolving set for G. The metric dimension of G denoted by dim(G), is the minimum cardinality of a resolving set of G. Graph structure can be used to study the various concepts of Navigation in space. A work place can be denoted as vertex in the graph, and edges denote the connections between the places. The problem of minimum machines (or Robots) to be placed at certain vertices to trace each and every vertex exactly once is a classical one. This problem can be solved by using networks where places are interconnected in which, the navigating agent moves from one vertex to another in the network. The places or vertices of a network where we place the machines (robots) are called landmarks. The minimum number of machines required to locate each and every vertex of the network is termed the metric dimension and the set of all minimum possible number of landmarks constitute metric basis. In this thesis, the metric dimension of some well known families of graphs has been investigated. It is shown that the families of graphs obtained from the path graph by the power, middle and total graph operation have a constant metric dimension. We compute the metric dimension of some rotationally symmetric families of graphs and show that only 2 or 3 vertices appropriately chosen suffice to resolve all the vertices of these graphs. In this thesis, we also compute the metric dimension of some families of convex polytopes with pendant edges. It is shown that the metric dimension of these families of graphs is constant and is independent of the order of these graphs. The metric dimension of the splitting graphs of two families of graph has been computed. We prove that the metric dimension of these graphs is unbounded and depends on the order of the corresponding graph.