Search or add a thesis

Advanced Search (Beta)
Home > اکبر حیدری کشمیری بطور غالب شناس

اکبر حیدری کشمیری بطور غالب شناس

Thesis Info

Author

سید وجاہت حسین شاہ

Supervisor

عبد العزیز ساحر

Institute

Allama Iqbal Open University

Institute Type

Public

City

Islamabad

Country

Pakistan

Thesis Completing Year

2018۔

Thesis Completion Status

Completed

Page

221 ص

Subject

Biography

Language

Urdu

Other

Call No: 928.91439 و ج ا; Publisher: علامہ اقبال اوپن یونیورسٹی،

Added

2021-02-17 19:49:13

Modified

2023-01-06 19:20:37

ARI ID

1676714414820

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

قدیم مصری عقاید اور جانور

قدیم مصری عقاید اور جانور

اس وقت مصریوں کا عقیدہ تھا کہ ابتدا سے آخر تک آسمان اور دریائے نیل ہی باقی بچ جانے والی سماوی مخلوق ہے ۔یہ تمام حیرت انگیز اجرام ِ فلکی محض اجرام نہیں بلکہ طاقتور روحوں اور ایسے دیوتائوں کی ظاہری صورتیں ہیں جن کے ارادے ہمیشہ یکساں نہیں ،یہ پیچیدہ اور مختلف تحریکوں کا حکم جاری کرتے رہتے ہیں ۔آسمان بذات خود ایک گنبد ہے جس کی وسعت کے پار عظیم گائے حت جور دیوی کھڑی ہے ۔زمین اس کے پیروں تلے تھی اور پیٹ پر دس ہزار ستاروں کا ملمع ،ایک مصری عقیدہ یہ بھی تھا کہ آسمان دیوتا سبو تھا ابیوت دیوی یعنی زمین کے اوپر دھیرے سے لیٹا ہے اور ان کی عظیم الجثہ مباشرت سے تمام چیزوں نے جنم لیا ۔

 دکتور محمود نے سامری کے بچھڑے والے بت پر ہاتھ رکھ کر کہا دکتور الطاف فرعونی ادوار میں جانور دیوتا زیادہ مقبول تھے مصریوں کے عبادت خانے ،سانڈ،مگر مچھ ، باز، گائے، ہنس ، بکرے،بلی، مینڈھے ،کتے ،مرغی ،ابابیل ،گیدڑ ،سانپ کی نسلوں سے بھرے پڑے تھے ۔ میں نے کہا ہندئوں اور مصریوں کے حوالے سے عقیدۂ تقدیس قریب قریب ہے ۔اس نے کہاں ہاں بہت مشابہت ہے ۔مگر مصری فرعون کے زمانے میں جانوروں سے جنسی اختلاط کے قائل تھے اور یہ عمل صرف مردوںکے لیے روانہ تھا بلکہ خوبصورت عورتیں مقدس بکروں کے ساتھ مجامعت کی خاطر پیش کی جاتی تھیں۔ بکرا اور سانڈ تخلیقی جنسی قوت کا نمائندہ تھا ۔ہندو عورتوںکی طرح مصری عورتیں بھی ان جانوروں کے اعضا کی ننگی شبیہیں مخصوص تہواروں میں اٹھاتیں اور ان سے رغبت اور محبت کا اظہار کرتیں ۔

عجائب گھر میں ملکی اوور غیر ملکی سیاحوں کے جتھوں کے جھتے داخل ہو رہے تھے...

فقہی احکام کے استنباط میں علت کا کردار

The Quran is the complete code of life and the fountainhead of guidance for all peoples till the last Day. When the Quran itself does not speak directly or in detail about a certain subject, Muslims only then turn to alternative sources of Islamic Law is this way the companions of the Prophet Muhammad (BPUH) would asking Him when they were not able to find a specific legal ruling in the Quran in spite they were Arabians. With the passage of time slowly gradually new issues and problems are to be faced by peoples in different times. Sometimes the companions & the followers not only salved those issues & problems in the light of Quran & Sunnah, but also played a significant role in such cases. To find the solution of any problem in the light of primary sources of Islam is called Etiology. Etiology has a significant role in the Sharia’s sources of analogy. To illustrate this, analogical reasoning can be viewed in this article.

Else: Ensemble Learning System With Evolution for Content Based Image Retrieva

Images and graphics are among the most important media formats for human communication and they provide a rich amount of information for people to understand the world. With the rapid development of digital imaging techniques and Internet, more and more images are available to public. Consequently, there is an increasingly high demand for effective and efficient image indexing and retrieval methods. However with the widely spread digital imaging devices, textual annotation of images be- comes impractical and inefficient for image representation and retrieval. To diminish the reliance on the textual annotations and associated meta- data for image search, the content based image retrieval (CBIR) has be- come one of the most popular topics in the field of computer vision and pattern recognition. In CBIR, the image representations are generated through the visual clues like color, texture, or shape of objects; and cer- tain machine learning algorithms are applied to understand the image semantics for meaningful image retrieval. However, despite the great deal of research work, the image retrieval performance of the CBIR sys- tems is not satisfactory due to the existent semantic gap between the low-level image representations and high-level visual concepts. To bridge this gap to some extent, three major issues in the active field of CBIR are investigated in this thesis, that are: consistency enhancement during the semantic association, improvement in the relevance feedback (RF) mechanism, and generation of a stable semantic classifier. Consistency enhancement in semantic association process, addresses the two main reasons, due to which the conventional CBIR systems are not able to produce the effective retrieval results. These are: the lack of output verification and neighborhood similarity avoidance. Due to these problems the image response is very inconsistent and the target output contains far more wrong results as compared to the right results. In this thesis, we concentrate these issues by applying the Neural Networks over the bag of images, and exploring the query’s semantic association space. In this regard semantic response of the top query neighbors is also taken into the account. The potential image retrieval is strongly dependent on the efficacy of the image representations. Therefore the deep texture analysis is performed through the best basis of the wavelet packets and Gabor filter to explore the representations which may serve as the most effective basis for automatic image retrieval. The Relevance feedback (RF) in CBIR, specifically focuses on the cus- tomization of the search results to the user’s query preferences based on the several feedback rounds. These systems can easily be mislead by theover-sensitivity in the subjective labeling. Another problem that usu- ally occur is the imbalanced class distribution that makes the classifier learning a real challenge. The amalgamation of both is a big reason for the user frustration, and hence make the system of no practical use. We overcome both of these issues through Genetic Algorithms, and demon- strated the positive performance impacts by SVM classifier. Extending the ideas for imbalance distribution in binary classification to multi-category environment leads in the form of a stable semantic classi- fier. The semantic association becomes even more challenging when there are many categories enrolled. The reason is that: the positive training samples for a particular class are naturally far less then the training samples from many other classes. Weak classifiers like SVM and Neural networks are not able to perform well in these circumstances. Therefore the most effective solution lies in the exploitation of the combined basis function for these week candidates. The Genetic classifier comity learn- ing (GCCL) is tuned for overcoming the limitations like classification biasness in multi-category environment, incompatible parameter estima- tion, and overfitting due to the high dimensional nature of the feature vectors compare to the training sets. The qualitative and quantitative analysis shows that the proposed method outperform many state-of-the- art methods.