ڈاکٹر محمد ایوب قادری
( شمس بدایونی )
ڈاکٹر محمد ایوب قادری سے میری دیرینہ ملاقات تھی، جب جب کراچی جانے کا موقع ملا، وہ بہت ہی عزیزانہ طور پر ملے، ہر ملاقات میں پہلے سے زیادہ اپنی بھلمنساہت، شرافتِ طبع، عجز اور انکسار کا ثبوت دیتے، بہت سی کتابوں کے مصنف ہوئے، جیسا کہ حسب ذیل مضمون سے ظاہر ہوگا، ان کے قلم میں بڑی برق وشی تھی، کسی کتاب کو لکھنا یا ترجمہ کرنا شروع کرتے تو بڑی کم مدت میں یہ کام ختم کردیتے، وہ جس بلند مرتبہ کے مصنف تھے، اپنے عجز و انکسار کی بدولت اس سے اپنے کو کم ہی ظاہر کرتے، وہ اپنی ہر کتاب دارالمصنفین ضرور بھیجتے اور اس کو یہ راقم شوق سے پڑھتا، جب انھوں نے کراچی کے قیام میں شاہنواز خاں کی تصنیف مآثر الامراء کی تین جلدوں کے ترجمے ہدیہ کیے، تو یہ تینوں جلدیں میری میز پر برابر رہیں، اور جب کبھی ان میں سے کسی اقتباس کو اصل فارسی سے ملایا، تو ان کو ہر طرح صحیح، سلیس اور فصیح پایا، اس سے ترجمہ کرنے میں ان کی مہارت اور قدرت کا معترف ہوا، جب وہ طبقات اکبری کا ترجمہ کررہے تھے تو ان سے یہ گفتگو آئی کہ اکبرنامہ کا ترجمہ ایک انگریز نے انگریزی میں کردیا ہے، لیکن یہ بڑی ندامت اور شرم کی بات ہے کہ اب تک اس کا اردو میں ترجمہ نہیں ہوسکا، گویہ بہت مشکل کام ہے، لیکن جب اس کا ترجمہ انگریزی میں ہوسکتا ہے، تو کوئی وجہ نہیں کہ اردو میں نہ ہوسکے، جناب ایوب قادری صاحب نے کہا کہ طبقات اکبری کے ترجمہ کے بعد انشاء اﷲ اکبرنامہ کی جلدوں کا ترجمہ کرکے لوگوں کی ندامت کو دور کردوں گا، اس سے مجھ کو بڑی خوشی ہوئی، گزشتہ نومبر میں میرے قیام کراچی ہی...
The study assessed the relationship between the factors affecting the academic achievement of the dean’s listers’ of Caraga State University. It involves the total population of the dean’s listers in the said university. The independent variables are those pre-determined factors’ affecting the academic achievement of the dean’s listers’ of Caraga State University and the dependent variable is the grades of the dean’s listers’. The result shows the low relationship between the pre-determined factors and the academic achievement evidenced by the values of the p-values which are greater than. In terms of the academic achievement of the dean’s listers’ their grades signifies their excellence in their different chosen fields. With regards to the pre-determined factors, the factor that got the highest mean is the teachers’ competence with 3.7639 and the lowest one is the learning environment with 3.6690. The study habits’ got the second spot among the 4 factors followed by the learning styles. Based on Spearmen Correlation analysis in the data gathered, the results revealed that there is no significant relationship between the pre-determined factors and the academic achievement of the dean’s listers’ of Caraga State University. The p-values obtained are less than 0.05 for all the data set; that is accepting the null hypothesis. The results clearly depicts that the students’ study habit, learning style teachers’ competence and the learning environment has no influence to the achievement reached by the dean’s listers’. On the other hand, it is still very important to make and to maintain these factors visible in the academic arena for a better learning and for a better outcome. The absence of these factors might affect the performances of the students’ in Caraga State University.
Image restoration is fundamental to visual information processing systems. In many real world scenarios, noise and blur are the two main unavoidable sources of degra- dation in images. The problem is deemed as an ill-posed inverse by nature due to the simultaneous occurrences of noise and blur in the image. Blurring function categorizes the degradation as space variant (SVD) if di erent spatial locations of the recorded scene are convolved by varying point spread function. In contrast, the degradation is categorized as spatially invariant (SID) if a unique point spread function blurs the whole image. This dissertation focuses on spatial degradations, initiating from space invariant towards space variant. Existing methods for restoration of SVD images, for example, neural networks and numerical optimization bear the limitations of high cost, lower restoration, less gen- eralization, discontinuity and instability for di erent spatial locations. It is learnt that three factors are vital to develop an e ective framework for restoration, which are: 1. The optimization of the ill-posed inverse restoration problem by minimizing constrained error function 2. A smoothness constraint 3. A regularization scheme The main objective of this dissertation is to improve the restoration results, by possible applications of new intelligent methods. This dissertation provides com- prehensive solutions to both spatial degradation problems, by considering above three factors. Firstly, SID images are restored, by a steepest descent based restora- tion approach. In this approach, an e cient smoothness constraint is proposed, to model the error function. In the next step, the steepest descent based approach is improved and a novel fuzzy regularization scheme is also proposed to better model the error function. It performed better than the existing methods on a speci c blur function and low power additive noise. However, local search properties of gradient based approaches and eventually lower restoration for SVD images, due to their high sensitivity for varying textures, noise powers and blurs allowed for the possible application of computational intelligence models. Finally, in this dissertation, a new optimization framework is proposed for image restoration of SVD images. In the proposed framework, particle swarm optimiza- tion based evolution is retained to minimize the Modi ed Error Estimate (MEE), for better restoration. The framework added hyper-heuristic layer to combine local and global search properties. Therefore, randomness in the evolution, augmented with apriori knowledge from problem domain, assisted in achieving the objective of better restoration. It introduced new swarm initialization and mutation of global best particle of the swarm. In addition, an adaptive weighted regularization scheme is introduced in MEE to cater with the uncertainty due to ill-posed nature of the in- verse problem. Furthermore, a new fuzzy logic and mathematical morphology based regularization scheme is also proposed in the framework, to improve the restoration stability and generalization, for SVD images. Di erent experiments are performed to observe the performance of proposed solu- tions. Visual and quantitative results are obtained and provided for each experiment. Signal-to-noise ratio (SNR) and mean-squared-error (MSE) are computed for com- parative analysis, which endorsed better restoration quantitatively, over well-known restoration methods. However, the stability in restoration performance of proposed framework is observed in visual results, for SVD images. Detailed experimental and comparative analysis shown better restoration, stabilization and generalization of the proposed framework for varied textures in standard and simulated images, and noises over well-known restoration approaches.