سیّد مبارک شاہ کی
’’ ہم اپنی ذات کے کافر‘‘ پر طائرانہ نظر
سیّد مبارک شاہ کی پہلی کتاب ’’جنگل گمان کے‘‘ 1993ء میں منظر عام پر آئی اور اشاعت کے اولین ماہ میں ہی سٹالوں پر دستیاب نہ رہی۔دوسری کتاب 1995ء میں شائع ہوئی جبکہ تیسری کتاب ’’مدارنارسائی میں‘‘1998ء میں چھپ کر سامنے آئی۔تینوں کتابوں کو اہل ذوق محبت میں عجلت دکھاتے ہوئے۔دکانوں سے اپنی لائبریریوں میں اور اشعار کو اوراق سے اپنے دلوں میں منتقل کر لیا۔سیّد مبارک شاہ کی دوسری کتاب ’’ہم اپنی ذات کے کافر‘‘ 1995ء میں چھپ کر اہل ذوق سے داد وصول کر چکی ہے۔یہ کتاب آپ کی غزلوں اور نظموں پر مشتمل ہے۔اس مجموعہ کلام میں (48) غزلیں شامل ہیں۔ان غزلوں کا موضوعاتی جائزہ لینے سے پہلے غزل کی تعریف اور ارتقاء پر روشنی ڈالتا ہوں۔
عربی،فارسی،پنجابی اور اردو کی مشہور و مقبول صنف غزل ہے۔اس صنف میں اتنی دلکشی،جاذبیت اور کھچاؤ موجود ہیکہ ہر دور اور ہر طبقے کے دلوں کی دھڑکن بنی رہی اور زندگی کی رگوں میں خون بن کر دوڑتی رہی ہے۔لفظ ’’غزل‘‘ کے ماخذ کے بارے میں ماہرین زبان و ادب کے درمیان اختلاف رائے موجود ہے۔ایک گروہ کا خیال ہے کہ ’’غزل‘‘ عربی زبان کا لفظ ہے جس کے معنی اون کتنا،اون کو تار تار کر کے دھاگہ تیار کرنا کے ہیں۔(1)
جب کہ دوسرے گروہ کا نظریہ ہے کہ عورتوں کے ساتھ بات چیت کرنا،اْن کے حسن و عشق کے بارے میں باتیں کرنا۔
’’در لغت حدیث کردن بازناں ومعاشقہ با ایشاں است ومغازلہ نیز عشق بازی و محاولہ بازناں است، در اصطلاح عبارت است ازابیاتی چند بریک وزن و قافیہ کہ بشعر مشتمل بر مضامین معاشقہ و تصویر احوال عشاق وجمال مشعوق۔‘‘(2)
This article is about the poetry of Arabs and its impacts on Pashto poetry. The poetry of Arab is famous in all over the world. In this article the Arabic poetry and its kinds has been explained. Before Islam, the Arab poetry was very prominent. Arabic poetry has many ’ASN└F (aspects) such as Ghazal/Nas┘b (love poetry), ╓am┐sa (War poetry), Fakhar (Pride) Rasa’ (poems on death), Mad╒a (praise), ╓ikmat and philosophy, ║habi‘at (nature) and hija’ (poetry against someone). Arab poetry contain on five literary period and also evaluate the Sab‘a Mu‘alq┐t and his writers: (1) the most prominent Poets of Jahel┘ period were ’Amr’ ul Qais, ╓aris bin ╓ilza, ‘amar bin kals┴m, ‘Ata bin shid┐d, ║urfa, Al Nabigha, Al Aghsha. In this article explained the Pashto poetry and its periods (1) ‘Aamir kar┴r period), (2) Khushal Khan Khattak period which called the Golden period of Pashto poetry, (4) modern period. Arabic poetry has a great impacts on Pashto poetry. Arabic poetry has impacts on Pashto Ghazal, Nazam, Marsiya, Mad╒a, philosophy and nature.
In this research the accuracy of Urdu Sentiment Analysis in multiple domains is enhanced by using the Lexicon-based approach. In the lexicon, apart from the traditional approach that considers adjectives only, nouns and verbs are also included. An efficient Urdu Sentiment Analyzer is developed that applies rules and makes use of this new lexicon to perform Urdu Sentiment Analysis by classifying sentences as positive, negative or neutral. Negations, intensifiers and context-depentent words are effectively handled for enhancing accuracy of Urdu Sentiment Analyzer. Specific rules for handling negations, intensifiers and context-dependent words are incorporated in Urdu Sentiment Analyzer. For testing the Lexicon-based approach, a corpus of 6025 sentences from 151 blogs belonging to 14 different genres is collected and the sentences are annotated by three human annotators to classify each sentence as positive, negative and neutral. Evaluating this Urdu Sentiment Analyzer, by using sentences from the corpus, yields the most promising results so far in Urdu language (up to the knowledge of the author) with 89.03% accuracy, 0.86 precision, 0.90 recall and 0.88 f-measure. The comparison with the previous works in Urdu Sentiment Analysis shows that the combination of this Urdu Sentiment Lexicon and Urdu Sentiment Analyzer is much more effective than the previous such combinations. The main reason for increased efficiency is the development of wide coverage lexicon and effective handling of negations, intensifiers and context-dependent words by the Urdu Sentiment Analyzer. Although high accuracy is achieved by Lexicon-based approach in multiple domains for Urdu Sentiment Analysis, which is the main objective of this research, but for comparison, Supervised Machine Learning approach is also used. Three well known classifiers that are Support Vector Machine, Decision Tree and K Nearest Neighbor are tested; their outputs are compared and their results are ultimately improved in several iterations. It is further concluded that K Nearest Neighbor is performing better than Support Vector Machine and Decision Tree. For verification of this result, three evaluation measures i.e. McNemar’s Test, Kappa Statistic and Root Mean Squared Error are used. The result from all these three evaluation measures confirmed that K Nearest Neighbor is performing much better than the other two classifiers and achieved 67.02% accuracy, 0.68, 0.67 and 0.67 precision, recall and f-measure respectively. The results from both the approaches are compared. On the basis of experiments performed in this research, it is concluded that the Lexicon-based approach outperforms Supervised Machine Learning approach, when Urdu Sentiment Analysis is performed in multiple domains in terms of accuracy, precision, recall and f-measure, economy of time and effort.