مولانا مناظر احسن گیلانی
حضرت الاستاذ رحمۃ اﷲ علیہ کا حادثہ وفات ابھی فراموش نہ ہوا تھا کہ آسمان علم و ادب کا ایک اور آفتاب غروب ہوگیا اور مولانا مناظر احسن گیلانی نے ۵؍ جون ۱۹۵۶ء کو انتقال کیا، وہ اپنے اوصاف و کمالات میں علمائے سلف کی یادگار اور علوم کی جامعیت، ذہانت و ذکاوت، دین و تقویٰ اور اخلاق و سیرت میں اس دور میں یگانہ تھے، جو اسلامی علوم میں ان کی نگاہ نہایت وسیع اور اس کی ہر شاخ میں ان کے قلم و زبان کی روانی یکساں تھی، اپنی ذہانت و اطباعی سے ایسے ایسے گوشوں سے معلومات و مسائل کا استنباط اور معمولی معمولی باتوں میں ایسے ایسے لطائف و نکات پیدا کرتے تھے کہ حیرت ہوتی تھی، علم ان کے تابع تھا وہ علم کے تابع نہ تھے ان کی ذہانت کتابوں کے انبار سے بے نیاز تھی، وہ تھوڑے معلومات سے ایسے مطول مضامین اور ضخیم کتابیں لکھ دیتے تھے جس کے لیے دوسرے مصنفین کو بڑے بڑے کتب خانوں کی ضرورت ہوتی ہے، ان کا نکتہ آفریں دماغ اور موّاج قلم جدھر رخ کردیتاتھا، تحریر کا دریا بہادیتا تھا، اور اپنے زور میں لعل و جواہر اور خس و خاشاک سب کو بہالے جاتا تھا۔
وہ ایک عرصہ تک جامعہ عثمانیہ کے شعبۂ دینیات کے صدر رہے، اور چوتھائی صدی سے زیادہ، ان کا علمی و تعلیمی فیض جاری رہا، اس زمانہ میں انھوں نے اپنے تلامذہ سے جو علمی و تحقیقی مقالات لکھوائے وہ اسلامی علوم کو جدید رنگ میں پیش کرنے کا ایک نمونہ ہیں، اس کے ذریعہ انھوں نے اس موضوع پر کام کرنے والوں کے لئے ایک شاہراہ قائم کردی۔
جامعہ عثمانیہ کے طلبہ میں اسلامی علوم پر تحقیقات اور جدید علوم سے ان کے موازنہ کا جو ذوق پیدا ہوا، اس...
Signaficance of the Understanding of Intra-faith Similerties: Analytical Study in the Context of Pakistan Muslims are commanded to foster unity as breaking into sects is forbidden by Allah. Islam teaches about broadness of vision and the emergence of different denominations in Islam is because of this broadness. There are different school of thoughts that emerged due to the broader perspective of Shar’ῑah rulings like Hanfῑ, Shᾱfῑ, Mᾱlikῑ and Hanblῑ, J'afrῑ etc despite that there is an essential unity in beliefs and practices among the Muslims. They all worship Allah, follow the last Messenger, Muhammad (ﷺ) and the last revelation Qur’an. They face the same Qibla while praying, prostrate to Allah five times a day, and believe in finality of prophet hood. Qur'an and Ahᾱdῑth are a source of jurisprudence for all Muslims. The difference between Muslims is in understanding and interpreting the Scripture and Ᾱhᾱdῑth of Prophet Muhammad (ﷺ) in the matters related with implementation of certain religious, social, political, and other duties. Islam rejects sectarianism, intolerance and extremism. Keeping in mind all of the above-mentioned points, in the article an attempt has been made to analyze the major challenges facing the intra-faith unity in Pakistan. The first is ignorance. Second is the role of media and scholars. Third is curriculum and fourth is intolerance. In the beginning the introduction of different schools of thought is given, and then forbearance demonstrated from the life of ‘Salaf Sᾱlihῑn’ has been described to establish an atmosphere of harmony in the present time, especially in Pakistan. The importance and significance of foundations of harmony is explained in such a manner that every Muslim should understand that the differences between the Muslims are very small, as they are only minor disagreements. Other than that, they are united in beliefs and practices. Finally, in the end, recommendations have been proposed.
Inequalities are one of the most important instruments in many branches of mathe- matics such as functional analysis, theory of differential and integral equations, inter- polation theory, harmonic analysis, probability theory, etc. They are also useful in mechanics, physics and other sciences. A systematic study of inequalities was started in the classical book [31] and continued in [54, 55]. In the eighties and nineties of the last century an impetuous increase of interest in inequalities took place. One result of this fact was a great number of published books on inequalities (see e.g. [4, 5, 37, 39, 38]) and on their applications (see e.g. [2, 11]). Nowadays the theory of inequalities is still being intensively developed. This fact is confirmed by a great number of recent published books (see e.g. [6, 56]) and a huge number of articles on inequalities. Thus, the theory of inequalities may be regarded as an independent area of mathematics. This PhD thesis is devoted to special kind of inequalities, namely Jensen’s and some its related inequalities involving Hermite-Hadamard inequality, Hardy and its limit Polya-Knopp inequality. In the first chapter, called Introduction, some basic notions and results from theory of convex functions and theory of inequalities are being introduced along with classical results of convex functions. In the second chapter, The weighted Jensen’s Inequality for convex-concave anti- symmetric functions is proved and some applications are given. In the third chapter we have discussed the generalized form of Hermite-Hadamard inequality for integrable Convex functions. In the fourth chapter Some estimates of Hardy, strengthened Hardy-Knopp and multidimensional Hardy-Polya-Knopp type differences for p < 0 and 0 < p < 1 are calculated. In the fifth chapter we prove a new general one-dimensional inequality for convex functions and Hardy-Littlewood averages. Furthermore, we apply this result to unify and refine the so-called Boas’s inequality and the strengthened inequalities of the Hardy-Knopp-type, deriving their new refinements as special cases of the obtained general relation. In particular, we get new refinements of strengthened versions of the well-known Hardy and P ́olya-Knopp’s inequalities, while in the last chapter some measures of divergences between vectors in a convex set of n−dimensional real vector space are defined in terms of certain types of entropy functions, and their log-convexity properties with some applications in Information theory are discussed.