پینتیس ہجری میں حضرت عثمان کی مظلومانہ شہادت کے بعد حضرت علی مسلمانوں کے چوتھے خلیفہ مقرر ہوئے ۔ ان کا دور حکومت 24 ذوالحجہ سن 35 ہجری سے 21 رمضان سن 40 ہجری تک کا ہے ۔ ان کو رسول اللہ ﷺ نے خود یمن قاضی بھی بنا کر بھیجا تھا۔ حضرت علی ،حضرت عمر کی طرح خود اعلیٰ پایہ کے قاضی تھے ۔ انہوں نے حضرت عمر اور حضرت عثمان کے دور میں قضاء کے فرائض سر انجام دیئے تھے ۔آپ کوا س کام کا بڑا تجربہ تھا۔ ایک دفعہ رسول اللہﷺ نے حضرت علی سے فرمایا تھا کہ تم سات چیزوں میں دوسرے لوگوں سے افضل ہو ۔ ان سات چیزوں میں سے ایک یہ ہے کہ تم امورِ الہٰی میں بہتر قاسم ہو اور دوسرا یہ کہ مقدما ت کا فیصلہ کرنے کے لیے بہت بڑے قاضی ہو۔ حضرت انس بن مالک سے روایت ہے کہ رسول اللہ ﷺ نے فرمایا
" أرحم أمتي بأمتي أبو بكر . وأشدهم في دين الله عمر . وأصدقهم حياء عثمان . وأقضاهم علي بن أبي طالب۔"306
حدودوقصاص کے حوالے سےحضرت علی کے چند مشہور فیصلے مندرجہ ذیل ہیں:
شراحہ ہمدانیہ کو رجم کرنا
حضرت علی نے بیان کیا جب جمعہ کے دن ایک عورت کو رجم کیا تو کہا کہ میں نے اس کا رجم رسول اللہ ﷺ کی سنت کے مطابق کیا ہے۔
"قيل جلدها يوم الخميس ورجمها يوم الجمعة فقيل له أجمعت بين حدين عليها فقال جلدتها بكتاب الله ورجمتها بسنة رسول الله۔"307
"شراحۃ بنت مالک ہمدانیہ کے بارے میں کہا جاتا ہے کہ آپ نے جمعرات کو کوڑے مارے اور جمعہ کو اسے رجم کیا اور اس پر دونوں حدیں جاری کیں۔ کوڑے قرآن مجید سے لگائے اور رجم سنت رسول اللہ ﷺ...
Man is a social animal and is unable to live isolated from other people and he also depends on other in most of his matters in his daily life. Give and take of buy and sale are the two aspects of human dealings and cooperation. Supply contract is a modern type of contract which was practiced for unknown time but without this title. Huge commodity is need of departmental stores, supper markets and of the dealers of the daily usage materials. This article is about the concept of supply in its literal, Islamic Jurisprudential, legal and commercial sence. Main elements and pronvision have also been mentioned in this article to be aware about the sharia guideline to deal in such contracts according to Islamic norms and teachings.
During acquisition or transmission, the visual quality of digital images is deteriorated due to the occurrence of impulse and speckle noises. These noises adversely effect various applications in image processing, pattern recognition, computer vision and medical imaging. Due to emerging imaging applications, recent trend is to develop application specific denoising systems. In this thesis, genetic programming (GP) based various denoising systems are developed for impulse and speckle noises. The proposed GP based evolutionary systems have effectively developed the domain specific denoising models that select the optimal informative features from the corrupted images. In the first phase of research, the genetic programming based mixed impulse denoising (GP-MID) system is developed to improve the visual quality of corrupted digital images. In this system, GP has optimally/near-optimally selects suitable statistical features to remove noise. In the second phase, the genetic programming based multi-type impulse denoising (GP-MuID) system is developed for corrupted digital images. This system has successfully removed salt & pepper, uniform impulse, mixed impulse and impulse burst noises, simultaneously. In the third phase, an advanced version of multi-gene genetic programming (MGGP) based biomedical image denoising (MGGP-BmID) system is developed to improve the visual quality of biomedical images. In the last phase, the multi-gene genetic programming based ultrasound image denoising (MGGP-UsID) system is developed to denoise speckle from ultrasound images. The improved performance of the GP based systems is obtained for diverse types of natural and biomedical images. The comparative analysis with existing approaches highlights the effectiveness of the proposed GP based evolutionary denoising systems. The improved denoising performance is achieved by the proposed GP based systems. It is because, during evolutionary learning process, the useful statistical features and primitive functions from a wider solution space are optimally/near-optimally combined to develop GP based intelligent noise detectors and estimators for image denoising problems.