المبحث السادس: بروين شاکر وفکرتها عن العشق
یوجد في أشعار بروین شاکر تجربۃ ذاتیۃ لحبھا وعشقھا، فقد کتبت بعض القصائد من تجربتھا الخاصۃ وحبھا القدیم ولکن کان لھا القدرۃ في أن تبقی السر سراً وکانت طریقۃ بیانھا مھذّبة لا تفشي أسرار حُبّھا۔
فقد کتبت بروین قادر آغا[1] عن بدایۃ حب الشاعرۃ وعشقھا الأول۔ قد أعجبت الشاعرۃ بشاب، وکان موظفًا حکوميًا فشارکتہ في أحلامھا وآمالھا، ولکن ذلک لم یکن رغبۃ الشاب فھو کان لا یُرید الزواج منھا لأنہ کان یختلف عنھا في النسب والحسب وکان یختلف عنھا في الفرقہ الدینیۃ، بأنہ کان من أھل السّنہ والشاعرۃ کانت من أھل الشیعۃ۔ فرفض ذلک الشاب الزواج، فکان ھذا أمرٌ صعبٌ للشاعرۃ لأنھا کانت تحب ذلک الشاب، ولکن بعد فترۃ أحسّ الشاب بالندم علی ما فعل مع الشاعرۃ فرجع لھا وأراد الزواج منھا، فأحست الشاعرۃ بالفرح ولکن والدیھا لم یرضوا بذلک الشاب والزواج منہ، فأحست الشاعرۃ بالحزن مرۃً أخری وتقطّع قلبھا من الألم والیأس، وعاشت أحزانھا معھا إلی أن تکوّن عندھا قابلیۃ علی إظھار مشاعرھا وأحزانھا۔ وکتبت الشاعرۃ الکثیر من أشعارھا توضح وحدتھا وألمھا۔
ثم جاء لھا خاطب آخر، فوافق والداھا علی زواجھا فتزوجت الشاعرۃ من نصیر علي وأنجبت منہ إبناً أسمّتہ (مراد) وعندما تزوجت الشاعرۃ أحست بالفرح ولذۃ العشق في أول أیام زواجھا، ولکن بعد مدۃ من الزمن حصلت خلافات بین بروین شاکر وزوجھا وحصل البعد بین الزوجین، فأحست الشاعرۃ بالیأس والحزن والوحدۃ وفراق الزوج فقامت الشاعرۃ بإظھار مشاعرھا وآلامھا وأحزانھا في قصائدھا بشكل صريح ۔
[1] بروین قادر آغا عمۃ الشاعرۃ تعیش في إسلام آباد، وھي أیضاً شاعرۃ رائعۃ۔
Since the articles publish in Weekend Reviews and journals like Pakistan Perspectives are usually anchored in Communication Research it is incumbent that the first basic steps in that Research are delineated first. The first steps consist of three basic exposures i.e. Selective exposure, selective perception and selective retention. A. Selective exposure means that you expose yourself to those events or developments you’re already familiar with. If that is, if you’re PMLN fan you don’t usually expose yourself to PPP meetings or events. That is you strengthen your already antecedent perception all the more-to the exclusion to other perceptions. B. Selective perception means that even when you expose yourself to selective exposure you try to pursue only those developments or events that you’re at home with. Since you don’t expose yourself to other perceptions you get yourself confirmed or strengthened in your own persistent views. C. Finally, selective retention means that you retain only such perceptions which again are antecedent to your previous perceptions. In any case, the differences wrought by exposing yourself to different views are great, even monumental. This is seen in the respective stance of Quaid-e-Azam Mohammad Ali Jinnah and Mohandas Karam Chand Gandhi on the federal part of the Government of India Act, 1935-1940. Jinnah use to expose himself to all sorts of document, word by word and formulated his stance in the light of his readings.
Resolvability in graphs has appeared in numerous applications of graph theory, e.g. in pattern recognition, image processing, robot navigation in networks, computer sciences, combinatorial optimization, mastermind games, coin-weighing problems, etc. It is well known fact that computing the metric dimension for an arbitrary graph is an NP-complete problem. Therefore, a lot of research has been done in order to compute the metric dimension of several classes of graphs. Apart from calculating the metric dimension of graphs, it is natural to ask for the characterization of graph families with respect to the nature of their metric dimension. In this thesis, we study two important parameters of resolvability, namely the metric dimension and partition dimension. Partition dimension is a natural generalization of metric dimension as well as a standard graph decomposition problem where we require that distance code of each vertex in a partition set is distinct with respect to the other partition sets. The main objective of this thesis is to study the resolving properties of wheel related graphs, certain nanostructures and to characterize these classes of graphs with respect to the nature of their metric dimension. We prove that certain wheel related graphs and convex polytopes generated by wheel related graphs have unbounded metric dimension and an exact value of their metric dimension is determined in most of the cases. We also study the metric dimension and partition dimension of 2-dimensional lattices of certain nanotubes generated by the tiling of the plane and prove that these 2-dimensional lattices of nanotubes have discrepancies between their metric dimension and partition dimension. We also compute the exact value of metric dimension for an infinite class of generalized Petersen networks denoted by P(n; 3) by giving answer to an open problem raised by Imran et al. in 2014, which complete the study of metric dimension for the class of generalized Petersen networks P(n; 3).