تہذیب عربی زبان کا لفظ ہے۔عربی میں یہ لفظ تراشنا،کانٹ ،چھانٹ کرنا،اصلاح کرنا،سنوارنا ،بچے کی اخلاقی تربیت کرنا اور اسے شائستہ بنانا کے معنوں میں استعمال ہوتا ہے ۔اُردو زبان میں لفظ تہذیب کے معانی اصلاح ،صفائی ،آراستگی ،ذہنی ترقی،شائستگی ،ادب و تمیز،طرزِ معاشرت ،رہنے سہنے کا انداز و تمدن ہے ،کلچر وہ مرکب کل ہے جس میں عقیدہ ،علم ،آرٹ،اخلاق،قانون ،رسم و رواج اور دیگر قابلتیں اور عادات شامل ہیں ۔جن کا انسا ن نے معاشرے کے ایک فرد کی حیثیت سے اکتساب کیا ہو۔مختصر یہ کہ تہذیب سے مراد ایک کثیر آبادی والے منظم معاشرے کی وہ تمام ذہنی و مادی سرگرمیاں ہیں جو نسلِ انسانی کی بقا ،معاشرے کی تنظیم ،قدرتی وسائل کا استعمال ،انسان کی روحانی و اخلاقی تربیت اور جمالیاتی حس کے لیے کی جائیں۔
سیالکوٹ کی تہذیب قدامت کے لحاظ سے پانچ ہزار سال سے بھی پہلے کے آثار ظاہر کرتی ہے۔راجہ شل نے اس تہذیب کو پروان چڑھانے میں اہم کردار ادا کیا۔’’مہابھارت‘‘ میں راجہ شل کی نگری ’’شاکل ‘‘ کا ذکر ملتا ہے۔(۳۶)
ہندوؤں کی مشہور کتاب ’’مہا پور نیا‘‘ ہندی میں ہے۔اس کا قدیم نسخہ سرائے بھا بھڑیاں کے لالہ اوم پرکاش نے تاریخ سیالکوٹ کے مصنف رشید نیاز کو ۱۹۴۲ء میں دیا تھا۔(۳۷)
اس کا ایک اقتباس پیش کیا جاتا ہے:
گیانی حام کے چھہ لڑکے تھے ۔ایک کانام ہنددوسرے کا نام سندھ،تیسرے کانام حبش ، چوتھے کانام افریج ،پانچویں کا نام ہرمز اور چھٹے کانام بویہ تھا۔سب سے بڑے لڑکے ہند نے بھارت کی بنیاد رکھی ۔ہند کے مشہور شہروں میں ایک مشہور شہر سیالکوٹ تھا۔یہ شہر جمبو(جموں) کے ڈھلوان میں آ پکا ندی کے کنارے آبا دہے۔راجہ بکر ماجیت سے ایک ہزار سال پہلے اس شہر پر راجہ کلدیوبھانی کی...
This is a historical fact that along with Arabs, rather morethan Arabs, the Quranic and Islamic sciences were dealt by the nonArabs. After Arabic, the Persian language attained the status of anIslamic language, and great books were written in Islamic literaturein Persian. After Persian, Urdu succeeded to hold the title of Islamiclanguage. A great many works of Islamic sciences and translationand exegesis of the Qur’ān were rendered into Urdu by the scholarsof the subcontinent and others. It is said that Urdu tafsīr began in the 12th century from theHijrah. As Jamīl Naqī says that the first Tafsīr was "Basā’ir alQur’ān" by Nikhal Shāh Jahānpūrī (114 A. H/1231AD), he points outthat Ḥakīm Muḥammad Ashraf Khān was the first one whotranslated the Qur’ān into Urdu with some comments. Shāh ‘AbdulQādir (1230 AH/1815AD) and Shah Rafi’udddīn followed him. However, Urdu translation and exegesis of the Quran byMurād’ullāh Anṣārī Sanbhalī, a disciple of Mirzā Maẓhar Jan-eJānān, is rightly said to be the earlier work than those of Shāh‘Abdul Qādir and Shāh Rafī’uddīn. However, the first completetranslations were of course of both of them. The Author of this research article, explores and discussesTafsīr-e-Murādiyah and highlights its scholarly merits, whichdetermine its status among the exegetical literature of the Quran.
Fixed point theory has been a flourishing area of mathematical research for decades, because of its many diverse applications. It is a combination of geometry, topology and analysis. This theory has been discovered as a very influential and essential mechanism in learning of nonlinear phenomena. It has a lot of applications in almost all branches of mathematical sciences, for example, proving the existence of solutions of ODE’S, PDE’S, integral equations, system of linear equations, closed orbit of dynamical systems and of equilibria in economics. In particular fixed point techniques have been applied in such different fields as economics, engineering biology, physics and chemistry. It has very fruitful applications in control theory, game theory, category theory, mathematical economics, mathematical physics, functional equations, integral equations, mathematical chemistry, mathematical biology, W* algebra, functional analysis and many other areas. The concept of fixed point plays a key role in analysis. Also, fixed point theorems are mainly used in existence theory of random differential equations, numerical methods like Newton-Rapshon method and Picard’s existence theorem and in other related areas. Fixed point theorems based on the consideration of order have importance in algebra, the theory of automata, mathematical linguistics, linear functional analysis, approximation theory and theory of critical points. Fixed point theorems play a key role in applications of variational inequalities, linear inequalities, optimization techniques and approximation theory. Thus the theory of fixed point has been studied by many researchers extensively. From the perspective of different settings, methods and applications, the fixed point theory is typically separated into three main branches: (i) Metric fixed point theory. (ii) Topological fixed point theory. (iii) Discrete fixed point theory. In history the boundary lines between the aforesaid three branches was defined by the creation of the following three main theorems: (i) Banach’s Fixed Point Theorem (1922). (ii) Brouwer’s Fixed Point Theorem (1912). (iii) Tarski’s Fixed Point Theorem (1955). Fixed point theory in modular function spaces is closely related to the metric theory, in that it provides modular equivalents of norm and metric concepts. Modular spaces are extensions of the classical Lebesgue and Orlicz spaces, and in many instances conditions cast in this framework are more natural and more easily verified than their metric analogs.