سلام
جب شفق کے کانوں میں بالیاں چمک رہی تھیں
آباد حویلیوں کی سنہری جالیاں چمک رہی تھیں
طاق میں روشن چراغوں کو۔۔۔!
کھڑکیوں اور دروازوں کو۔۔۔!
صفاء اور مروا کی چوٹیوں کو چوم کر۔۔۔!
ہوائیں عقیدت میں جھک کر سلام کرتی تھیں
پھر شفق کی چمکتی بالیوں کے۔۔۔!
سنہری چمکتی جالیوں کے روبرو۔۔۔!
باوفا قافلے کی تشکیل میں!
قافلے کا سارباں ،رازداں چنا گیا
سوسن و نسترن کا گلابی قرار چنا گیا
با وفا صحیفے کے ساتھ۔۔۔خیمہ بھی۔۔۔!
ماہتابی شباب، چراغ اور ردا بھی تھی
پھر ظہر ہوئی۔۔۔عصر بھی گزر گئی
اب تو دشت نینواء پر۔۔۔!
سوسن و نسترن کے پھول بکھرے ہوئے ہیں
جلتے خیموں کا دھواں ہی دھواں ہے
اے حسینؑ اب علیؑ تجھ پر سلام
اے بنتِ حسینؑ و علیؑ تجھ پر سلام
Islam is a divine religion. It is based on divine revelation (Holy Quran) and sunnah of the Holy Prophet ﷺ. As a religion it is a complete code of life. It does not deal with worships only but addresses all fields of life. Like Beliefs and worship, Islam focuses on education also. As a last and chosen religion, it motivates human beings to seek knowledge. The first word of the first revelation (Chapter Al-alaq) starts with Iqra means Read. In first five ayat of chapter Al-alaq, the basic requirement for enhance of education (Read, knowledge and pen) have been mentioned six times. Similarly, the Holy Prophet r took many steps for imparting education. In this connection, the example of first residential university (Suffa’h) is sufficient. Imam Ghazali one of the most famous Muslim thinkers discusses the education in his books in detail. He was born in 448 AH (1057 CE) at Tabaran a town in the district of Tus, which lies within the Khorasan Province of Iran and died on 18 December (1111 CE). In this article knowledge, its classification, stages, curriculum, art of teaching, responsibility of both teachers as well as students have been discussed in the light of Imam Ghazali educational philosophy.
The aim of this thesis is to study the projective and curvature symmetries in non-static spacetimes. A study of non-static spherically symmetric, non-static plane symmetric, non-static cylindrically symmetric and special non-static axially symmetric spacetimes according to their proper curvature collineations (CCS) is given by using the rank of the 6 × 6 Riemann matrix and direct integration techniques. We consider the non-static spherically symmetric spacetimes to investigate proper CCS. It has been shown that when the above spacetimes admit proper CCS, they turn out to be static spherically symmetric and form an infinite dimensional vector space. In the non- static cases CCS are just Killing vector fields. In case of non-static plane symmetric spacetimes, it has been shown that when above spacetimes admit proper CCS, they form an infinite dimensional vector space. We consider the non-static cylindrically symmetric and special non-static axially symmetric spacetimes to study the proper CCS. It has been investigated that when above spacetimes admit proper CCS, they also form an infinite dimensional vector space. We consider the special non-static plane symmetric spacetimes to investigate proper projective collineations. Following an approach developed by G. Shabbir in [39], which basically consists of some algebraic and direct integration techniques to study proper projective collineations in the above spacetimes. It has been shown that when the above spacetimes admit proper projective collineations, they become a very special class of the spacelike or timelike versions of FRW K=0 model.