Search or add a thesis

Advanced Search (Beta)
Home > Hydromagnetic Flow and Heat Transfer in a Second Grade Fluid Due to Oscillatory Stretching Surface

Hydromagnetic Flow and Heat Transfer in a Second Grade Fluid Due to Oscillatory Stretching Surface

Thesis Info

Author

Asma Farooq

Department

Department of Mathematics, QAU

Program

Mphil

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

2014

Thesis Completion Status

Completed

Page

42

Subject

Mathematics

Language

English

Other

Call No: Diss/ M.Phil / MAT / 1024

Added

2021-02-17 19:49:13

Modified

2023-02-19 12:33:56

ARI ID

1676715538175

Similar


Loading...
Loading...

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

کچھ یادیں کچھ باتیں

کچھ یادیں کچھ باتیں
یہ اُن دنوں کی بات ہے جب میں رسمی تعلیم کے ایک مرحلے کی تکمیل کے بعد عملی زندگی میں قدم رکھنے کی جستجو میں تھا کہ میری ملاقات ایک ایسے شخص سے ہوئی جس نے زندگی میں درپیش مسائل سے نبردآزما ہونے میں بہت مدد کی اوراب بھی تادمِ تحریر اِن کے علمی و ادبی فیض سے استفادہ جاری ہے۔
جون ۱۹۹۲ئ؁ کی بات ہے کہ خالد بھٹی (مرحوم) نے اپنے حاوی کالج میں طلباء کی خوشنویسی کی تربیت کے لیے بطور خوش نویس معلم مجھے خدمات سر انجام دینے کے لیے آمادہ کیا اور اسی سلسلہ میں ایک اشتہار ’’حاوی کالج کی فخریہ پیشکش‘‘ تدریس ِ خطاطی کی باقاعدہ کلاس کی کتابت کے لیے خالد بھٹی کے ہمراہ اِن کی رہائش گاہ پر حاضر ہوا تو دیکھا کہ ایک تیس بتیس سالہ خوش شکل، خوش رنگ ، خوش لباس ، دبلا پتلا ، باریش شخص سامان کتابت کے ساتھ اپنی مسندِ خاص پر برا جمان ہے اور جلد ہی یہ احساس بھی ہوا کہ وہ خوش اخلاق اور مہمان نواز بھی ہے۔ ازاں بعد ملاقاتوں کا سلسلہ جاری رہا۔ رب کریم کی مجھ پر کرم نوازی ہوئی کہ مارچ ۱۹۹۳ئ؁ میں میں اُن کارفیق کا ر بن گیا اور ہم گورنمنٹ مڈل سکول نمبر ۲ میں اکٹھے رہے ۔ اُن سے رفاقت کا سلسلہ جیسے طول پکڑ تاگیا۔ اُن کی شخصیت کے ہر پہلو سے مجھے آشنائی ہوتی گئی ۔
۱۹۶۲ئ؁ میں عارف والا کے مضافاتی شہر چک نمبر ۳۷/ ای۔بی میں جنم لینے والا محمد اکرم جس نے ابتدائی تعلیم اپنے والدِ محترم سے حاصل کی اور محض چھ سال کی عمر میں والد کا سایہ سر سے اُٹھ گیا ۔ پھر یتیمی کی ستم ظریفی اور غریب الوطنی کی پُرخار راہوں سے گزرتے ہوئے میٹرک کا...

استحکام خاندان میں زوجین کا کردار: سیرت طیبہ کا عملی و اطلاقی مطالعہ

In this universe, the most important relationship among the humans is marriage, other relations exist on the basis of this relationship. In the Holy Quran, the relationship of spouses has been mentioned as a source of mutual peace and love. In our society, it is said that women organize a home, but in reality a home can not be establish alone, spouses together make and adorn it with painstaking efforts. Man plays pivotal role in the relationship of spouses. So the responsibility of stability of the family lies on the man much more than the women and its reason is superiority. We find many examples from the marital life of our Prophet(S.A.W.W). This paper will highlight the teachings of Prophet Muhammad (S.A.W.W) about the role of spouses in the establishment of a family.

Recent Trends in Time Series Modeling and Prediction of Wind Data: Statistical and Fuzzy Reasoning Approach

We developed stochastic time series models such as ARMA( p,q), non- seasonal ARIMA, seasonal ARIMA (SARIMA) and MTM models to simulate and forecast hourly averaged wind speed sequences on twenty year data ,.i.e, 1985-2004 of Quetta, Pakistan. Stochastic Time Series Models take into account several basic features of wind speed including autocorrelation, non-Gaussian distribution and non-stationarity. The positive correlation between consecutive wind speed observations is taken into account by fitting ARMA process to wind speed data. The data are normalized to make their distributions approximately Gaussian and standardized to remove scattering of transformed data (stationary,.i.e., without chaos).Diurnal variations has been taken into account to observe forecasts and its dependence on lead times. We find the ARMA (p,q) model suitable for prediction interval and probability forecasts. But the MTM model is relatively better as a simulator compared to ARMA modeling. The suitability of ARMA (p,q) model for both long range (1-6 hours) and short range (1-2 hours) indicates that forecast values are the deciding components for an appropriate wind energy conversion systems, WECS. ARMA processes work with non-stationary (chaotic) data. Non-seasonal ARIMA models and the prediction equations for each month and indeed for each season of a twenty year wind data are presented. The seasonal ARIMA (SARIMA) and its prediction equations for each month of a twenty year data are also studied. With non- stationarity or chaos in data, stochastic simulator in the ARIMA processes does not effectively work although its prediction equations are good enough to forecast relatively short range reliable values. Various statistical techniques are used on twenty five years, .i.e., 1980-2004 data of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) are developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We followed the coefficient of determination,.i.e., a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) are also developed from deciphering the interdependence of weather parameters. We used Spearman’s rank correlation and Goldfeld-Quandt tests to check the uniformity or non uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity (uniformity of variances in the distribution of data). We also employed Bartlett’s test for homogeneity of variances on a twenty five years data of rainfall and humidity, respectively which showed that the variances in rainfall data are not homogenous while in case of humidity, are homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. We performed design free fuzzy logic (FL) time series prediction modeling on a twenty year wind data, .i.e., 1985-2004 for Quetta, Pakistan. We followed design free fuzzy logic and obtained prediction of hourly wind data for spring (February, March and April). Non-stationarity or random walk in wind data exists but it does not influence prediction. Mackey Glass (MG) simulation of wind data indicated chaos or non periodicity. Moreover, stable attractors are observed in MG-time series, the origin of which is yet unknown. The attractors seen in MG simulation do not influence FL time series prediction. We studied singleton and non-singleton type-1 back propagation (BP) designed sixteen rule fuzzy logic system (FLS) on hourly averaged wind data of twenty years ,.i.e., 1985-2004. We found that the BP designed 16 rule non-singleton-type-1 FLS is relatively a better forecaster than singleton-type-1.We find hidden or unraveled uncertainties such as non-stationarity and stable attractors. These uncertainties make the data chaotic. The criterion of selecting root mean square error (RMSE) for establishing comparison is not suitable for chaotic data. Non-stationarity in the data can be properly handled with non- singleton type-1 FLS, therefore, there appears no reason to use a type-2 FLS. The stable attractors and non-stationarity in our data do not affect the predicted values as confirmed by Mackey Glass simulation. The chaos can be effectively resolved through parallel structure fuzzy system (PSFS) which exploits time-delays.. A variety of Artificial Neural Network models for prediction of hourly wind speed (which a few hours in advance is required to ensure efficient utilization of wind energy systems) at Quetta, Pakistan is studied and the results are compared. Satisfactory results are obtained with Feed Forward Back Propagation Neural Networks (FFBPNN). An empirical relationship is developed which shows the Gaussian profile for the number of neurons which varies with lag inputs, .i.e., nn = k exp(-il2) where nn shows the number of neurons, il the lag inputs, and k the sloping ratio. Feed Forward Neural Networks (FFNNs) can be corrected with optimization of empirical relationship for simulators followed by back propagation technique. The disadvantages of FFNNs comprise of heavy computational requirements, and non-existence of Artificial Neural Network(ANN) design methodologies for deciding the value of the learning rate and momentum. Neural Network (NN) modeling is not suitable for chaotic data characterized by randomness and non-stationarity.