آہ! مولانا سید ابوالحسن علی ندویؒ
یہ بات کس طرح دل میں اتاری جائے کہ عالم اسلام کی سب سے زیادہ معتبر اورمعروف ومشہور شخصیت حضرت مولانا سید ابوالحسن ندوی اب اس دنیا میں نہیں رہے ہیں، وہ۳۱/دسمبر۱۹۹۹ء کوانتقال فرماگئے ہیں۔ اناﷲ واناالہ راجعون۔ یہ بات اب بات نہیں رہی ہے حقیقت ہوچکی ہے اورحقیقت کوکسی بھی طرح جھٹلایا نہیں جاسکتاہے اورجب یہ حقیقت ہے کہ حضرت مولاناسید ابوالحسن علی ندوی اس دنیا سے ہم سب کو چھوڑ کرچلے گئے ہیں توہمارے لیے رونے کے علاوہ کوئی چارہ ہی نہیں رہاہے۔رونا اس لیے ہے کہ اس دنیا میں ایک وہ ہی ہستی ایسی بچی تھی جوصرف اورصرف اسلام اورانسانیت کے لیے مستعد عمل تھی۔ جس نے اپنی پوری حیات میں اپنے لیے کچھ نہ پا کرپوری انسانیت کے لیے سب کچھ کیا، اپنی تمام ترتوانائیوں کواسلام کی سربلندی اورانسانیت کی بہتری و فلاح کے لیے صرف کیا۔مولانا سید ابوالحسن علی ندوی کے انتقال کوہم بیسویں صدی کاسب سے بڑا المیہ ہی کہیں گے۔اس پرفتن ماحول میں وہ شرافت میں یکتاتھے، انسانیت میں منفرد تھے، اخلاق وتہذیب اورتمدن عالم انسانیت کے لیے فقید المثال تھے، رواداری ووضعداری میں ان کی زندگی ایک نمونہ تھی، تقویٰ وطہارت میں انہیں امتیازی خصوصیات حاصل تھیں۔ سادگی ان کااوڑنا بچھونا تھی، دوسروں کے لیے ان کے یہاں سب کچھ تھا ضرورت مندوں،حاجت مندوں کے لیے وہ بادشاہ تھے، لیکن اپنے لیے وہ کچھ نہ تھے انہوں نے اپنی زندگی کو دوسروں کی خدمت، انسانیت کی فلاح اوراسلام مذہب کی آبیاری کے لیے وقف کررکھا تھا۔ وہ اپنے آپ میں ایک انجمن تھے ان میں اسلامی تعلیمات کی صحیح معنوں میں تمام ہی خصوصیات تھیں۔ان کی ہربات میں اسلامیت جھلکتی تھی۔ وہ دورصحابہؓ کی تمام خصوصیات و اچھائیوں اورخوبیوں کے حامل تھے۔
ان کی وفات سے ایسا محسوس ہورہا ہے کہ انسانیت کی...
Parental factors impact students’ self-concept and academic performance during the pandemic. Thus, this study determined the students’ self-concept and academic performance and the parental factors related to it. The research design was descriptive-correlational, and 500 nonrandom college students in West Philippines participated in the study. Researcher-made instruments were used, which were subjected to reliability and validity evaluation. Data were collected online from June 2021 to July 2022 and were analyzed using descriptive (frequency counts and percentage) and inferential statistics (Spearman correlation). Results revealed a positive self-concept and satisfactory academic performance among the students. Besides, parental factors such as educational attainment and school/classroom involvement are significantly related to self-concept and academic performance. Further, self-concept is significantly associated with academic performance. This shows that some parental factors are vital in developing the student’s self-beliefs and supporting their studies and academic endeavors amid the COVID-19 pandemic. Future studies may consider more factors related to academic achievement and self-concept. Other researchers may find the mediation or moderation effect of self-concept between parental factors and students’ scholastic achievement.
KEYWORDS: academic performance, COVID-19 pandemic, distance learning, higher education, parental factors, self-concept
The interior and vital part of human eye is retina whose function is to capture and send images to brain. It consists of different structures along with two types of blood vessels; veins and arteries. These retinal blood vessels are affected by number of eye diseases such as Hypertensive Retinopathy (HR) and Diabetic Retinopathy (DR). HR is a retinal disease that is caused by consistent elevated blood pressure (hypertension). Many people in the World are suffering from HR disease; however, in most of cases, HR patients are unaware of it. The automated diagnostic systems are very useful for ophthalmologists to diagnose different retinal diseases. With the help of automated systems, the ophthalmologists can monitor and make treatment plan of retinal disease. Many researchers have developed different automated HR detection systems, but no automated system exists that detects and grades HR along with Papilledema (last stage of HR). Most of existing methods only performed artery venous classification rather than complete automated method for HR detection and grading. In this thesis, an automated system is presented that detects the HR at various stages using Arteriovenous Ratio (AVR) and Papilledema (optic disc swelling) signs. The proposed system consists of two modules i.e. vascular analysis for calculation of AVR and optic nerve head region analysis for Papilledema. AVR calculating stage consists of three major modules i.e. main component extraction, Artery and Vein (A/V) classification and AVR calculation. A new set of color and statistical features have been proposed in this research for accurate A/V classification. The proposed system effectively performs A/V classification and vessels width calculation for AVR computation to diagnose and grade HR. Second module detects and grades the Papilledema through analysis of fundus retinal images. The proposed system formulates a feature set which consists of Grey-Level Co-occurrence Matrix, optic disc margin obscuration, color and vascular features. A feature vector of these features is used for classification of normal and Papilledema images using Support Vector Machine (SVM) with its Radial Basis Function (RBF) kernel. The variations in retinal blood vessels, color properties, texture deviation of optic disc and its peripapillary region, and fluctuation of obscured disc margin are effectively identified and used by the proposed system for the detection and grading of Papilledema. In this thesis, a new local dataset AVRDB containing 100 images is developed for analysis of HR and annotated with assistance of expert ophthalmologists of Armed Forces Institute of Ophthalmology (AFIO), Pakistan. The proposed methods are evaluated on the images of INSPIRE-AVR, VICAVR, STARE and newly developed HR dataset (AVRDB). The proposed HR detection method shows the average accuracies of 95.14%, 96.82% and 98.76% for INSPIRE-AVR, VICAVR and AVRDB databases, respectively. It also shows HR grading results with average accuracies of 98.65%, 98.61% and 98.92% for INSPIRE-AVR, VICAVR and AVRDB databases, respectively. The proposed Papilledema detection method shows average accuracy of 92.86% and grading results with average accuracy of 97.85% on hybrid dataset of 160 images (70 images of AVRDB database and 90 images of STARE database), respectively. These results authenticate that this research is a milestone towards automated detection and grading of HR disease.