Search or add a thesis

Advanced Search (Beta)
Home > Pitch Detection of Speech Signals Using Wavelet Transform

Pitch Detection of Speech Signals Using Wavelet Transform

Thesis Info

Author

Ehsan Muhammad Sarwar

Department

Deptt. of Electronics, QAU.

Program

Mphil

Institute

Quaid-i-Azam University

Institute Type

Public

City

Islamabad

Province

Islamabad

Country

Pakistan

Thesis Completing Year

1998

Thesis Completion Status

Completed

Page

53

Subject

Electronics

Language

English

Other

Call No: DISS/M.Phil ELE/44

Added

2021-02-17 19:49:13

Modified

2023-02-19 12:33:56

ARI ID

1676715830463

Similar


Loading...

Similar Thesis

Showing 1 to 20 of 100 entries
TitleAuthorSupervisorDegreeInstitute
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
Mehran University of Engineering and Technology, Jamshoro, Pakistan
Mphil
Quaid-i-Azam University, Islamabad, Pakistan
BS
COMSATS University Islamabad, Islamabad, Pakistan
MS
International Islamic University, Islamabad, Pakistan
University of Engineering and Technology, Lahore, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
MS
International Islamic University, Islamabad, Pakistan
BS
COMSATS University Islamabad, Islamabad, Pakistan
BS
International Islamic University, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
PhD
Hamdard University, Karachi, Pakistan
MS
International Islamic University, Islamabad, Pakistan
BCE
COMSATS University Islamabad, Islamabad, Pakistan
RCS
COMSATS University Islamabad, Islamabad, Pakistan
MSc
Quaid-i-Azam University, Islamabad, Pakistan
University of Engineering and Technology, Lahore, Pakistan
BET
COMSATS University Islamabad, Islamabad, Pakistan
PhD
Quaid-I-Azam University, Islamabad, Pakistan
MS
International Islamic University, Islamabad, Pakistan
TitleAuthorSupervisorDegreeInstitute
Showing 1 to 20 of 100 entries

Similar Books

Loading...

Similar Chapters

Loading...

Similar News

Loading...

Similar Articles

Loading...

Similar Article Headings

Loading...

انج تاں توں ڈکینڈا نئیں ہائیں۔

انج تاں توں ڈکیندا نہیں ہائیں، ڈکیا ہنجواں ہاہواں نال
انج تاں توں ٹھلیہندا نہیں ہائیں، ٹھلیا ٹھنڈیاں ساہواں نال
بدل ماحول گیا اے سارا نویاں قدراں بدلن نال
گولاں اج وناں تے نہیں نے، نہیں نے بور اکاہواں نال
سر دا بھار اوڑک نوں اپنے پیراں اتے اونا ایں
اپنے بھار نے چونے پوندے ٹٹیاں ہویاں باہواں نال
ہک دوجے نال مل کے سارے لوک ترقی کر دے نیں
بندے نکل جاندے نیں اگے، اپنیاں اپنیاں ٹھاہواں نال
پٹھے وڈھ کے چھیڑ مجھیں دا اج رجونا پوندا اے
ڈھور کدے وی رج دے نہیں نیں، بنیوں پٹے گھاہواں نال
نازک جان ملوک تیری اے، اوکھا پیار دا پینڈا ای
ساڈی ریس ناں کر توں جھلیا، اسیں ہاں حال تباہواں نال
بھانویں اوگنہار ہاں میں، پاک نبیؐ دی امت ہاں
مینوں ساڑ دوزخ نہیں سکدا اگاں اتے بھاہواں نال

ISOMERISM: IS THERE MISCONCEPTION?

Nine articles have been analyzed containing research results on misconceptions about isomerism. Analysis was conducted to examine the potential to causes emergence of the misconception. The analysis result are expected to be useful for teachers in learning for the same concepts. At least the teacher can avoid misconceptions that have happened before and innovate to find the right learning strategy. Isomerism can be categorized as a defined concept so that students are expected to be able to use rules for the purpose of classifying objects or events. The analysis showed 31 misconceptions experienced by grade 11 students to prospective chemistry teachers on isomerism concept. Thirty-one misconceptions are classified into three groups based on students' abilities needed to understand the concept of isomerism. The three groups are: (1) understanding the definition and application of rules; (2) spatial understanding; and (3) microscopic understanding. At this time only eleven misunderstandings were discussed, namely misunderstandings whose causes belong to the group (1). As an indicator caused misconception is inability of the sample to classify objects/events based on the attributes or characters indicated by the object/event. To teach a defined concept, it is recommended to use a strategy that contains detailed explanatory definitions and rules, examples and non-examples, and the elaboration process. In order to increase student reasoning, it is recommended to use a isomerism concept logic scheme

Improved Inference under Heteroscedasticity of Unknown Form Using a New Class of Bootstrap and Nonparametric Estimators

It is well-known that use of ordinary least squares for estimation of linear regression model with heteroscedastic errors, always results into inefficient estimates of the parameters. Additionally, the consequence that attracts the serious attention of the researchers is the inconsistency of the usual covariance matrix estimator that, in turn, results in inaccurate inferences. The test statistics based on such covariance estimates are usually too liberal i.e., they tend to over-reject the true null hypothesis. To overcome such size distortion, White (1980) proposes a heteroscedasticity consistent covariance matrix estimator (HCCME) that is known as HC0 in literature. Then MacKinnon and White (1985) improve this estimator for small samples by presenting three more variants, HC1, HC2 and HC3. Additionally, in the presence of influential observations, Cribari-Neto (2004) presents HC4. An extensive available literature advocates the use of HCCME when the problem of heteroscedasticity of unknown from is faced. Parallel to HCCME, the use of bootstrap estimator, namely wild bootstrap estimator is also common to improve the inferences in the presence of heteroscedasticity of unknown form. The present work addresses the same issue of inference for linear heteroscedastic models using a class of improved consistent covariance estimators, including nonparametric and bootstrap estimators. To draw improved inference, we propose adaptive nonparametric versions of HCCME, bias-corrected versions of nonparametric HCCME, adaptive wild bootstrap estimators and weighted version of HCCME using some adaptive estimator, already available in literature, namely, proposed by Carroll (1982). The performance of all the estimators is evaluated by bias, mean square error (MSE), null rejection rate (NRR) and power of test after conducting extensive Monte Carlo simulations.